我正在尝试应用keras功能模型。我不太明白为什么输入大小与卷积层不兼容。
我试图使用顺序模型将插件作为一个功能层,但是问题仍然存在。
# if input shape = (TARGET_HEIGHT, TARGET_WIDTH, 1),
# You must feed a value for placeholder tensor 'input_1' with dtype float and shape [?,352,288,1]
# if input shape = (AMOUNT, TARGET_HEIGHT, TARGET_WIDTH),
# number of input channels does not match corresponding dimension of filter, 288 != 1
# if input shape = (TARGET_HEIGHT, TARGET_WIDTH, AMOUNT)
# number of input channels does not match corresponding dimension of filter, 300 != 1
# if input shape = (AMOUNT, TARGET_HEIGHT, TARGET_WIDTH, 1),
# input tensor must have rank 4
# if shape = (AMOUNT, TARGET_HEIGHT, TARGET_WIDTH), data_format='channels_last'
# Input() got an unexpected keyword argument 'data_format'
如果我使用功能模型来实现,编译器会说SRCNN1转换层的张量必须与输入张量来自同一张图。
def base_model_SRCNN(FILENAME, HEIGHT, WIDTH):
par = load_parameter(FILENAME) #load transfer learning parameters
model = Sequential()
model.add(Conv2D(64, (9,9), padding = 'same', activation ='relu', use_bias = True,
input_shape=(HEIGHT,WIDTH, 1), trainable = False))
model.add(Conv2D(32, (1, 1), padding='same', activation='relu', use_bias = True, trainable = True))
model.add(Conv2D(1, (5, 5), padding='same', activation = 'relu', use_bias = True, trainable = True))
for i in range(3):
model.layers[i].set_weights(par[i])
print(model.summary())
model.compile(loss = 'mean_squared_error', optimizer = adam(lr=0.0005, decay=1e-6), metrics=[ssim_for2d, psnr_for2d])
return model
def combined(FILENAME, AMOUNT, DEPTH, TARGET_HEIGHT, TARGET_WIDTH):
ip = Input(shape = (TARGET_HEIGHT, TARGET_WIDTH, 1))
tf.reset_default_graph()
#SRCNN_network = base_model_SRCNN(FILENAME, TARGET_HEIGHT, TARGET_WIDTH) (ip)
SRCNN1 = Conv2D(64, (9, 9), padding = 'same', activation ='relu', use_bias = True,
data_format='channels_last', trainable = False) (ip) #input_shape=(TARGET_HEIGHT, TARGET_WIDTH, 1),
SRCNN2 = Conv2D(32, (1, 1), padding='same', activation='relu', use_bias = True, trainable = True) (SRCNN1)
SRCNN3 = Conv2D(1, (5, 5), padding='same', activation = 'relu', use_bias = True, trainable = True) (SRCNN2)
model = combined(FILENAME, AMOUNT, DEPTH, TARGET_HEIGHT, TARGET_WIDTH)
#AMOUNT, TARGET_HEIGHT, TARGET_WIDTH = 300, 352, 288
回溯(最近通话最近一次):
File "main.py", line 71, in <module>
model = combined(FILENAME, AMOUNT, DEPTH, TARGET_HEIGHT, TARGET_WIDTH)
File "/home/user1/REUS/image-reconstruction/code/functional/model_build_up.py", line 51, in combined
data_format='channels_last', trainable = False) (ip) #input_shape=(TARGET_HEIGHT, TARGET_WIDTH, 1),
File "/home/user1/.conda/envs/tf-gpu/lib/python3.7/site-packages/keras/engine/base_layer.py", line 457, in __call__
output = self.call(inputs, **kwargs)
File "/home/user1/.conda/envs/tf-gpu/lib/python3.7/site-packages/keras/layers/convolutional.py", line 171, in call
dilation_rate=self.dilation_rate)
File "/home/user1/.conda/envs/tf-gpu/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py", line 3650, in conv2d
data_format=tf_data_format)
File "/home/user1/.conda/envs/tf-gpu/lib/python3.7/site-packages/tensorflow/python/ops/nn_ops.py", line 838, in convolution
with ops.name_scope(name, "convolution", [input, filter]) as name:
File "/home/user1/.conda/envs/tf-gpu/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 6083, in __enter__
g = _get_graph_from_inputs(self._values)
File "/home/user1/.conda/envs/tf-gpu/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 5713, in _get_graph_from_inputs
_assert_same_graph(original_graph_element, graph_element)
File "/home/user1/.conda/envs/tf-gpu/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 5649, in _assert_same_graph
original_item))
ValueError: Tensor("conv2d_1/kernel:0", shape=(9, 9, 1, 64), dtype=float32_ref) must be from the same graph as Tensor("input_1:0", shape=(?, 352, 288, 1), dtype=float32).
答案 0 :(得分:0)
该错误告诉您有多个tensorflow计算图,并且您正在尝试合并来自不同图的操作,但这是行不通的。
发生这种情况是因为您正在使用tf.reset_default_graph()
,我认为根本不需要它,请尝试使用它。