我有一个简单的链表。没有ABA问题的危险,我对阻塞类别感到满意,而且我不在乎我的列表是FIFO,LIFO还是随机的。只要插入成功而不使其他人失败。
该代码看起来像这样:
class Class {
std::atomic<Node*> m_list;
...
};
void Class::add(Node* node)
{
node->next = m_list.load(std::memory_order_acquire);
while (!m_list.compare_exchange_weak(node->next, node, std::memory_order_acq_rel, std::memory_order_acquire));
}
我或多或少地随机填写了所使用的memory_order的。 在这里使用正确的存储顺序是什么?
我已经看到人们在所有地方都使用std::memory_order_relaxed
,SO上的一个人也使用了std::memory_order_release
,但是在compare_exchange_weak成功的案例中,然后是sudo apt-get update
sudo apt-get install mysql-server
sudo ufw allow mysql
systemctl start mysql
sudo /usr/bin/mysql -u root -p
use mysql;
update user set authentication_string=password('set_new_password') where user='root';
sudo mysql -u root -p
enter your new password
-genmc项目使用memory_order_acquire /两次memory_order_acq_rel在可比的情况下,但我无法让genmc用于测试用例:(。
答案 0 :(得分:1)
使用Michalis Kokologiannakis genmc的 excellent 工具,我可以使用以下测试代码来验证所需的内存顺序。不幸的是,genmc当前需要C代码,但这与确定内存顺序当然无关紧要。
// Install https://github.com/MPI-SWS/genmc
//
// Then test with:
//
// genmc -unroll 5 -- genmc_sll_test.c
// These header files are replaced by genmc (see /usr/local/include/genmc):
#include <pthread.h>
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
#include <stdatomic.h>
#include <stdio.h>
#define PRODUCER_THREADS 3
#define CONSUMER_THREADS 2
struct Node
{
struct Node* next;
};
struct Node* const deleted = (struct Node*)0xd31373d;
_Atomic(struct Node*) list;
void* producer_thread(void* node_)
{
struct Node* node = (struct Node*)node_;
// Insert node at beginning of the list.
node->next = atomic_load_explicit(&list, memory_order_relaxed);
while (!atomic_compare_exchange_weak_explicit(&list, &node->next,
node, memory_order_release, memory_order_relaxed))
;
return NULL;
}
void* consumer_thread(void* param)
{
// Replace the whole list with an empty list.
struct Node* head = atomic_exchange_explicit(&list, NULL, memory_order_acquire);
// Delete each node that was in the list.
while (head)
{
struct Node* orphan = head;
head = orphan->next;
// Mark the node as deleted.
assert(orphan->next != deleted);
orphan->next = deleted;
}
return NULL;
}
pthread_t t[PRODUCER_THREADS + CONSUMER_THREADS];
struct Node n[PRODUCER_THREADS]; // Initially filled with zeroes -->
// none of the Node's is marked as deleted.
int main()
{
// Start PRODUCER_THREADS threads that each append one node to the queue.
for (int i = 0; i < PRODUCER_THREADS; ++i)
if (pthread_create(&t[i], NULL, producer_thread, &n[i]))
abort();
// Start CONSUMER_THREAD threads that each delete all nodes that were added so far.
for (int i = 0; i < CONSUMER_THREADS; ++i)
if (pthread_create(&t[PRODUCER_THREADS + i], NULL, consumer_thread, NULL))
abort();
// Wait till all threads finished.
for (int i = 0; i < PRODUCER_THREADS + CONSUMER_THREADS; ++i)
if (pthread_join(t[i], NULL))
abort();
// Count number of elements still in the list.
struct Node* l = list;
int count = 0;
while (l)
{
++count;
l = l->next;
}
// Count the number of deleted elements.
int del_count = 0;
for (int i = 0; i < PRODUCER_THREADS; ++i)
if (n[i].next == deleted)
++del_count;
assert(count + del_count == PRODUCER_THREADS);
//printf("count = %d; deleted = %d\n", count, del_count);
return 0;
}
其输出为
$ genmc -unroll 5-genmc_sll_test.c
探索的完整执行次数:6384
总挂钟时间:1.26s
将memory_order_release
或memory_order_acquire
替换为memory_order_relaxed
会引起断言。
实际上,可以检查出,仅插入节点时使用排他memory_order_relaxed
就足以将它们清楚地显示在列表中(尽管以“随机”顺序排列-没有顺序一致,因此顺序如果由于其他原因而存在这种关联,则添加它们的方式与线程尝试添加它们的方式不一定相同。
但是,memory_order_release
是必需的,因此当用head
读取memory_order_acquire
时,我们可以确定所有非原子的next
指针在“消费者”中都是可见的“线程。
请注意,这里没有ABA问题,因为用于head
和next
的值在被'consumer_thread'函数删除之前是不能“重用”的,这是这些节点所在的唯一位置(因此)允许删除,这意味着只能有一个使用者线程(此测试代码不会检查ABA问题,因此它也可以使用2 CONSUMER_THREADS起作用)。
实际代码是一种垃圾回收机制,其中多个“生产者”线程可以删除时将它们添加到指向单链接列表的指针,但是实际上只有在一个特定线程中这样做才是安全的(在这种情况下,因此只有一个“消费者”线程,该线程在主循环中一个众所周知的位置执行此垃圾回收。