今天,我再次在python和数据分析领域苦苦挣扎。
我有一个看起来像这样的数据框:
name totdmgdealt
0 Warwick 96980.0
1 Nami 25995.0
2 Draven 171568.0
3 Fiora 113721.0
4 Viktor 185302.0
5 Skarner 148791.0
6 Galio 130692.0
7 Ahri 145731.0
8 Jinx 182680.0
9 VelKoz 85785.0
10 Ziggs 46790.0
11 Cassiopeia 62444.0
12 Yasuo 117896.0
13 Warwick 129156.0
14 Evelynn 179252.0
15 Caitlyn 163342.0
16 Wukong 122919.0
17 Syndra 146754.0
18 Karma 35766.0
19 Warwick 117790.0
20 Draven 74879.0
21 Janna 11242.0
22 Lux 66424.0
23 Amumu 87826.0
24 Vayne 76085.0
25 Ahri 93334.0
..
..
..
这是一个数据框,其中包括一个游戏冠军的总伤害。 现在,我想对这些信息进行分组,这样我就可以看到哪个冠军造成的伤害最大。 我尝试了groupby('name'),但是根本没有用。 我已经通过了一些有关groupby和求和值的线程,但是我没有解决我的特定问题。
每个冠军造成的伤害也应显示为总数的百分比。
我正在寻找类似这样的输出:
name totdmgdealt percentage
0 Warwick 2378798098 2.1 %
1 Nami 2837491074 2.3 %
2 Draven 1231451224 ..
3 Fiora 1287301724 ..
4 Viktor 1239808504 ..
5 Skarner 1487911234 ..
6 Galio 1306921234 ..
答案 0 :(得分:4)
我们可以按名称分组并得到sum
,然后将每个值除以.div
,然后将其与.mul
乘以100,最后用{将其四舍五入到小数点后一位{3}}:
total = df['totdmgdealt'].sum()
summed = df.groupby('name', sort=False)['totdmgdealt'].sum().reset_index()
summed['percentage'] = summed.groupby('name', sort=False)['totdmgdealt']\
.sum()\
.div(total)\
.mul(100)\
.round(1).values
name totdmgdealt percentage
0 Warwick 343926.0 12.2
1 Nami 25995.0 0.9
2 Draven 246447.0 8.7
3 Fiora 113721.0 4.0
4 Viktor 185302.0 6.6
5 Skarner 148791.0 5.3
6 Galio 130692.0 4.6
7 Ahri 239065.0 8.5
8 Jinx 182680.0 6.5
9 VelKoz 85785.0 3.0
10 Ziggs 46790.0 1.7
11 Cassiopeia 62444.0 2.2
12 Yasuo 117896.0 4.2
13 Evelynn 179252.0 6.4
14 Caitlyn 163342.0 5.8
15 Wukong 122919.0 4.4
16 Syndra 146754.0 5.2
17 Karma 35766.0 1.3
18 Janna 11242.0 0.4
19 Lux 66424.0 2.4
20 Amumu 87826.0 3.1
21 Vayne 76085.0 2.7
答案 1 :(得分:1)
您可以使用sum()
来获取总dmg,并使用apply
来计算与每一行相关的信息,例如:
import pandas as pd
from io import StringIO
df = pd.read_csv(StringIO("""
name totdmgdealt
0 Warwick 96980.0
1 Nami 25995.0
2 Draven 171568.0
3 Fiora 113721.0
4 Viktor 185302.0
5 Skarner 148791.0
6 Galio 130692.0
7 Ahri 145731.0
8 Jinx 182680.0
9 VelKoz 85785.0
10 Ziggs 46790.0
11 Cassiopeia 62444.0
12 Yasuo 117896.0
13 Warwick 129156.0
14 Evelynn 179252.0
15 Caitlyn 163342.0
16 Wukong 122919.0
17 Syndra 146754.0
18 Karma 35766.0
19 Warwick 117790.0
20 Draven 74879.0
21 Janna 11242.0
22 Lux 66424.0
23 Amumu 87826.0
24 Vayne 76085.0
25 Ahri 93334.0"""), sep=r"\s+")
summed_df = df.groupby('name')['totdmgdealt'].agg(['sum']).rename(columns={"sum": "totdmgdealt"}).reset_index()
summed_df['percentage'] = summed_df.apply(
lambda x: "{:.2f}%".format(x['totdmgdealt'] / summed_df['totdmgdealt'].sum() * 100), axis=1)
print(summed_df)
输出:
name totdmgdealt percentage
0 Ahri 239065.0 8.48%
1 Amumu 87826.0 3.12%
2 Caitlyn 163342.0 5.79%
3 Cassiopeia 62444.0 2.21%
4 Draven 246447.0 8.74%
5 Evelynn 179252.0 6.36%
6 Fiora 113721.0 4.03%
7 Galio 130692.0 4.64%
8 Janna 11242.0 0.40%
9 Jinx 182680.0 6.48%
10 Karma 35766.0 1.27%
11 Lux 66424.0 2.36%
12 Nami 25995.0 0.92%
13 Skarner 148791.0 5.28%
14 Syndra 146754.0 5.21%
15 Vayne 76085.0 2.70%
16 VelKoz 85785.0 3.04%
17 Viktor 185302.0 6.57%
18 Warwick 343926.0 12.20%
19 Wukong 122919.0 4.36%
20 Yasuo 117896.0 4.18%
21 Ziggs 46790.0 1.66%
答案 2 :(得分:0)
也许您可以尝试以下操作: 我尝试使用示例数据来实现相同目的,然后尝试将以下代码运行到Jupyter Notebook中:
import pandas as pd
name=['abhit','mawa','vaibhav','dharam','sid','abhit','vaibhav','sid','mawa','lakshya']
totdmgdealt=[24,45,80,22,89,55,89,51,93,85]
name=pd.Series(name,name='name') #converting into series
totdmgdealt=pd.Series(totdmgdealt,name='totdmgdealt') #converting into series
data=pd.concat([name,totdmgdealt],axis=1)
data=pd.DataFrame(data) #converting into Dataframe
final=data.pivot_table(values="totdmgdealt",columns="name",aggfunc="sum").transpose() #actual aggregating method
total=data['totdmgdealt'].sum() #calculating total for calculating percentage
def calPer(row,total): #actual Function for Percentage
return ((row/total)*100).round(2)
total=final['totdmgdealt'].sum()
final['Percentage']=calPer(final['totdmgdealt'],total) #assigning the function to the column
final
样本数据:
name totdmgdealt
0 abhit 24
1 mawa 45
2 vaibhav 80
3 dharam 22
4 sid 89
5 abhit 55
6 vaibhav 89
7 sid 51
8 mawa 93
9 lakshya 85
输出:
totdmgdealt Percentage
name
abhit 79 12.48
dharam 22 3.48
lakshya 85 13.43
mawa 138 21.80
sid 140 22.12
vaibhav 169 26.70
理解并运行代码,只需将数据集替换为Yours。也许有帮助。