我正在关注本教程:
https://blogs.rstudio.com/tensorflow/posts/2017-12-22-word-embeddings-with-keras/
我遇到两个错误:
这里一个:
> library(reticulate)
Error in value[[3L]](cond) :
Package ‘reticulate’ version 1.12 cannot be unloaded:
Error in unloadNamespace(package) : namespace ‘reticulate’ is imported by ‘tensorflow’, ‘keras’ so cannot be unloaded
我决定继续查看代码是否在没有reticulate
的情况下工作。直到一切都很好。
> model %>%
+ fit_generator(
+ skipgrams_generator(reviews, tokenizer, skip_window, negative_samples),
+ steps_per_epoch = 100000, epochs = 5
+ )
Error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 2 array(s), but instead got the following list of 1 arrays: [array([[[ 11],
[ 2],
[ 7],
...,
[ 125],
[11461],
[11461]],
[[15529],
[ 9344],
[ 8413],
...,
[ 24],
...
但是昨天它仍然有效,但是由于我想使用GPU版本,因此我对keras
和tensorflow
安装进行了许多更改。
关于如何解决的任何想法?
> dim(target_vector)
[[1]]
NULL
[[2]]
[1] 128
> dim(context_vector)
[[1]]
NULL
[[2]]
[1] 128
> dim(dot_product)
[[1]]
NULL
[[2]]
[1] 1
> dim(output)
[[1]]
NULL
[[2]]
[1] 1
教程中的代码:
download.file("https://snap.stanford.edu/data/finefoods.txt.gz", "finefoods.txt.gz")
library(readr)
library(stringr)
reviews <- read_lines("finefoods.txt.gz")
reviews <- reviews[str_sub(reviews, 1, 12) == "review/text:"]
reviews <- str_sub(reviews, start = 14)
reviews <- iconv(reviews, to = "UTF-8")
head(reviews, 2)
library(keras)
tokenizer <- text_tokenizer(num_words = 20000)
tokenizer %>% fit_text_tokenizer(reviews)
#
library(reticulate)
library(purrr)
skipgrams_generator <- function(text, tokenizer, window_size, negative_samples) {
gen <- texts_to_sequences_generator(tokenizer, sample(text))
function() {
skip <- generator_next(gen) %>%
skipgrams(
vocabulary_size = tokenizer$num_words,
window_size = window_size,
negative_samples = 1
)
x <- transpose(skip$couples) %>% map(. %>% unlist %>% as.matrix(ncol = 1))
y <- skip$labels %>% as.matrix(ncol = 1)
list(x, y)
}
}
embedding_size <- 128 # Dimension of the embedding vector.
skip_window <- 5 # How many words to consider left and right.
num_sampled <- 1 # Number of negative examples to sample for each word.
input_target <- layer_input(shape = 1)
input_context <- layer_input(shape = 1)
embedding <- layer_embedding(
input_dim = tokenizer$num_words + 1,
output_dim = embedding_size,
input_length = 1,
name = "embedding"
)
target_vector <- input_target %>%
embedding() %>%
layer_flatten()
context_vector <- input_context %>%
embedding() %>%
layer_flatten()
dot_product <- layer_dot(list(target_vector, context_vector), axes = 1)
output <- layer_dense(dot_product, units = 1, activation = "sigmoid")
model <- keras_model(list(input_target, input_context), output)
model %>% compile(loss = "binary_crossentropy", optimizer = "adam")
summary(model)
model %>%
fit_generator(
skipgrams_generator(reviews, tokenizer, skip_window, negative_samples),
steps_per_epoch = 100000, epochs = 5
)