我具有以下功能:
import tensorflow.keras.layers as tks
def conv_bn_acttivation(x, filters, kernel_size, strides, data_format, activation=relu, is_training=False, name=None):
conv = tks.Conv2D(....)(x)
bn = tks.BatchNormalization()(conv, is_training)
if activation:
return activation(bn)
return bn
现在,我想使用tf.cond
conv = conv_bn_acttivation(x,....)
short_cut = tf.cond(
tf.equal(input_channels, filters),
tks.Lambda(lambda: x), # identity
tks.Lambda(lambda: conv_bn_activation(x=x, filters=filters, kernel_size=1, strides=1,data_format=data_format))
result = conv + short_cut
我在false_fn中遇到此错误 TypeError:__call __()缺少1个必需的位置参数:“ inputs” ?!