我正在尝试将3x2 excel(3x组数据,男性和女性一组)合并到一个大数据框中。每个excel可以包含不同的人。
每个数据框当前存在4列:Lidnummer
,Speler
,Club
,Klassement
。
每个excel看起来都像下面的
| Lidnummer | Speler | Club | Klassement |
|-----------|--------|------|------------|
| 1 | some1 | meh | A |
| 2 | some2 | meh | D |
| 3 | some3 | meh | B2 |
每个性别和每个学科(s
,x
,d
)都存在
所以我写了以下代码块来读取每个数据集
single_male = pd.read_excel(xlxs, sheet_name=0)[['Lidnummer', 'Speler', 'Club', 'Klassement']].rename(index=str, columns={'Klassement': 's'}).assign(d=np.nan, x=np.nan, gender='M')
single_female = pd.read_excel(xlxs, sheet_name=1)[['Lidnummer','Speler', 'Club', 'Klassement']].rename(index=str, columns={'Klassement': 's'}).assign(d=np.nan, x=np.nan, gender='F')
double_male = pd.read_excel(xlxs, sheet_name=2)[['Lidnummer','Speler', 'Club', 'Klassement']].rename(index=str, columns={'Klassement': 'd'}).assign(s=np.nan, x=np.nan, gender='M')
double_female = pd.read_excel(xlxs, sheet_name=3)[['Lidnummer','Speler', 'Club', 'Klassement']].rename(index=str, columns={'Klassement': 'd'}).assign(s=np.nan, x=np.nan, gender='F')
mix_male = pd.read_excel(xlxs, sheet_name=4)[['Lidnummer','Speler', 'Club', 'Klassement']].rename(index=str, columns={'Klassement': 'x'}).assign(d=np.nan, s=np.nan, gender='M')
mix_female = pd.read_excel(xlxs, sheet_name=5)[['Lidnummer','Speler', 'Club', 'Klassement']].rename(index=str, columns={'Klassement': 'x'}).assign(d=np.nan, s=np.nan, gender='F')
这将合并我认为需要的数据。我将其合并如下
dataFrames = [single_male, single_female, double_male, double_female, mix_male, mix_female]
players = reduce(lambda left, right: pd.merge(left, right, on=['Lidnummer','Speler', 'Club', 'gender'], how='outer'), dataFrames)
players.head()
这似乎可行,除了它创建了列s_x
,s_y
,d_x
,d_y
,x_x
,x_y
。然后将每个学科(s,d和x)的数据分为两列。
一些谷歌搜索建议包含例如's'
在合并的on=
部分中,但随后出现错误
You are trying to merge on object and float64 columns. If you wish to proceed you should use pd.concat
我尝试使用concat,但无法正常工作。
那么我如何为s
,d
和x
制作一列,其中包含每个学科的数据?
因此,结果数据集将如下所示:
| Lidnummer | Speler | Club | gender | s | d | x |
|-----------|--------|------|--------|----|-----|----|
| 1 | some1 | meh | M | A | A | A |
| 2 | some2 | meh | F | D | C2 | C1 |
| 3 | some3 | meh | F | B2 | B1 | B2 |
答案 0 :(得分:1)
您可以尝试以下代码(此处没有excel)吗?
columns= ['Lidnummer', 'Speler', 'Club', 'Klassement']
single_male = pd.read_excel(xlxs, sheet_name=0)[columns]
single_male['gender']='M'
single_female = pd.read_excel(xlxs, sheet_name=1)[columns]
single_male['gender']='F'
double_male = pd.read_excel(xlxs, sheet_name=2)[columns]
single_male['gender']='M'
double_female = pd.read_excel(xlxs, sheet_name=3)[columns]
single_male['gender']='F'
mix_male = pd.read_excel(xlxs, sheet_name=4)[columns]
single_male['gender']='M'
mix_female = pd.read_excel(xlxs, sheet_name=5)[columns]
single_male['gender']='F'
all= pd.concat([single_male, single_female, double_male. double_female, mix_male, mix_female], axis='index', ignore_index=True)
all.rename({'Klassement': 's'}, axis='columns', inplace=True)
all['d']= all['s']
all['x']= all['s']