如何使用诸如st_intersects()之类的sf方法过滤R简单要素集合?

时间:2019-07-12 21:49:59

标签: r dplyr spatial sf

SF是R-Spatial软件包,旨在与诸如dyplr和管道之类的整洁语法一起使用。

我想对一个简单的要素集合对象做一个简单的空间过滤。给定一个简单的要素集合,我想从集合中返回满足某些几何条件的所有要素。特别是,我想找到与另一个对象相交的特征。

SF提供了功能st_intersects(x,y,...),但我无法使其与dplyr一起使用。

我正在使用R 3.5.2和从github安装的最新sf。

library(tidyverse)
library(sf)
#> Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3

# many multipolygons:
nc <- st_read(system.file("shape/nc.shp", package="sf"))

#> Simple feature collection with 100 features and 14 fields
#> geometry type:  MULTIPOLYGON
#> dimension:      XY
#> bbox:           xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
#> epsg (SRID):    4267
#> proj4string:    +proj=longlat +datum=NAD27 +no_defs

# A point in Ashe County:
ash_point <- nc %>% 
  filter(NAME == "Ashe") %>% 
  st_point_on_surface()

# how many counties intersect ash_point? 
nc %>% 
  st_intersects(ash_point, sparse = FALSE) %>% 
  sum()
#> [1] 1

# return the features which intersect ash_point:
nc %>% 
  filter(st_intersects(ash_point, sparse = FALSE)) 
#> although coordinates are longitude/latitude, st_intersects assumes that they are planar
#> Simple feature collection with 100 features and 14 fields
#> geometry type:  MULTIPOLYGON
#> dimension:      XY
#> bbox:           xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
#> epsg (SRID):    4267
#> proj4string:    +proj=longlat +datum=NAD27 +no_defs
#> First 10 features:
#>     AREA PERIMETER CNTY_ CNTY_ID        NAME  FIPS FIPSNO CRESS_ID BIR74
#> 1  0.114     1.442  1825    1825        Ashe 37009  37009        5  1091
#> 2  0.061     1.231  1827    1827   Alleghany 37005  37005        3   487
#> 3  0.143     1.630  1828    1828       Surry 37171  37171       86  3188
#> 4  0.070     2.968  1831    1831   Currituck 37053  37053       27   508
#> 5  0.153     2.206  1832    1832 Northampton 37131  37131       66  1421
#> 6  0.097     1.670  1833    1833    Hertford 37091  37091       46  1452
#> 7  0.062     1.547  1834    1834      Camden 37029  37029       15   286
#> 8  0.091     1.284  1835    1835       Gates 37073  37073       37   420
#> 9  0.118     1.421  1836    1836      Warren 37185  37185       93   968
#> 10 0.124     1.428  1837    1837      Stokes 37169  37169       85  1612
#>    SID74 NWBIR74 BIR79 SID79 NWBIR79                       geometry
#> 1      1      10  1364     0      19 MULTIPOLYGON (((-81.47276 3...
#> 2      0      10   542     3      12 MULTIPOLYGON (((-81.23989 3...
#> 3      5     208  3616     6     260 MULTIPOLYGON (((-80.45634 3...
#> 4      1     123   830     2     145 MULTIPOLYGON (((-76.00897 3...
#> 5      9    1066  1606     3    1197 MULTIPOLYGON (((-77.21767 3...
#> 6      7     954  1838     5    1237 MULTIPOLYGON (((-76.74506 3...
#> 7      0     115   350     2     139 MULTIPOLYGON (((-76.00897 3...
#> 8      0     254   594     2     371 MULTIPOLYGON (((-76.56251 3...
#> 9      4     748  1190     2     844 MULTIPOLYGON (((-78.30876 3...
#> 10     1     160  2038     5     176 MULTIPOLYGON (((-80.02567 3...

reprex package(v0.3.0.9000)于2019-07-12创建

st_intersects()单独返回正确的逻辑矩阵,但是在过滤器中使用时,即使逻辑矩阵具有“ FALSE”的要素也将返回所有结果。

3 个答案:

答案 0 :(得分:2)

请注意,st_intersection(, sparse = TRUE)返回逻辑matrix,而filter需要一个向量。我们可以通过对矩阵进行子集化来获得选择向量:

nc %>%
  filter(st_intersects(., ash_point, sparse = FALSE)[1,])

.必须具有nc的参数,而不仅仅是st_intersects的参数。

如果filter方法将直接对filter.sf的输出敏感,而不需要st_intersectssparse=FALSE,那就太好了。我把它放在一些待办事项清单上。

答案 1 :(得分:0)

显然,要使dplyr动词与sf函数一起使用,您需要指定列名称“ geometry”。

更正的版本:

nc %>% 
  filter(st_intersects(geometry, ash_point, sparse = FALSE))

答案 2 :(得分:0)

请注意:对于这种用例,我对所提出的方法并不成功。但是,直接操纵st_intersects的输出以创建指标变量对我来说是有效的:r - Convert output from sf::st_within to vector