根据data.table中特定列上的多个条件来标记行

时间:2019-07-12 12:56:44

标签: r data.table

我有一个data.table,其中包含特定年份中的“性能”多列和一个名为“预期性能”的列。我想创建一个名为FLAG的新列,该列将基于以下两个条件指示标记为需要手动检查的行:

  1. 任何性能列的值为负
  2. 预期绩效栏与任何绩效栏的差异超过50%。

类似于我拥有的模拟数据表。

library(data.table)
dt <- data.table(Id = c("N23", "N34", "N11", "N65", "N55", "N78", "N88"),
                 Name = c("ABCD", "ACBD", "ACCD", "ADBN", "ADDD", "DBCA", "CBDA"),
                 Type = c("T", "B", "B", "T", "T", "B", "B"),
                 Sold = c(500, 300, 350, 500, 350, 400, 450),
                 Baseline = c(2000, 2100, 2000, 1500, 1890, 1900, 2000),
                 Perf_2016 = c(-200, 420, 800, 900, -10, 75, 400),
                 Perf_2017 = c(500, 300, -20, 700, 50, 80, 370),
                 Perf_2018 = c(1000, 400, 600, 800, 40, 500, 300),
                 ExpPerf_2019 = c(1500, 380, 500, 850, 30, 400, 350))
dt

Id Name Type Sold Baseline Perf_2016 Perf_2017 Perf_2018 ExpPerf_2019
N23 ABCD T   500  2000     -200      500       1000      1500
N34 ACBD B   300  2100     420       300       400       380
N11 ACCD B   350  2000     800       -20       600       500
N65 ADBN T   500  1500     900       700       800       850
N55 ADDD T   350  1890     -10       50        40        30
N78 DBCA B   400  1900     75        80        500       400
N88 CBDA B   450  2000     400       370       300       350

对于此data.table,所需的输出将添加FLAG列,如下所示:

    Id Name Type Sold Baseline Perf_2016 Perf_2017 Perf_2018 ExpPerf_2019  FLAG
1: N23 ABCD    T  500     2000      -200       500      1000         1500  TRUE
2: N34 ACBD    B  300     2100       420       300       400          380 FALSE
3: N11 ACCD    B  350     2000       800       -20       600          500  TRUE
4: N65 ADBN    T  500     1500       900       700       800          850 FALSE
5: N55 ADDD    T  350     1890       -10        50        40           30  TRUE
6: N78 DBCA    B  400     1900        75        80       500          400  TRUE
7: N88 CBDA    B  450     2000       400       370       300          350 FALSE

2 个答案:

答案 0 :(得分:6)

  
      
  1. 任何性能列的值为负
  2.   
  3. 预期绩效列与任何绩效列的差异超过50%。
  4.   

换句话说,这些列有共同的最小和最大范围:

  • 最小为max(0,ExpPerf * 0.5)
  • 最大为ExpPerf * 1.5

所以...

dt[, v := !Reduce(`&`, 
  lapply(.SD, between, pmax(0, ExpPerf_2019*0.5), ExpPerf_2019*1.5)
), .SDcols=grep("^Perf_", names(dt), value=TRUE)]

    Id Name Type Sold Baseline Perf_2016 Perf_2017 Perf_2018 ExpPerf_2019     v
1: N23 ABCD    T  500     2000      -200       500      1000         1500  TRUE
2: N34 ACBD    B  300     2100       420       300       400          380 FALSE
3: N11 ACCD    B  350     2000       800       -20       600          500  TRUE
4: N65 ADBN    T  500     1500       900       700       800          850 FALSE
5: N55 ADDD    T  350     1890       -10        50        40           30  TRUE
6: N78 DBCA    B  400     1900        75        80       500          400  TRUE
7: N88 CBDA    B  450     2000       400       370       300          350 FALSE

工作原理:

  • between检查一列是否位于最小值和最大值之间
  • lapply将检查应用于每一列,并返回一个列表
  • Reduce&检查是否所有列都满足条件
  • !否定结果,因此我们确定至少一列不符合条件的情况

between&!是向量化运算符,因此我们最终得到了一个结果向量,每一行一个。我可能会在magrittr中编写此序列,因此步骤更易于遵循:

library(magrittr)

dt[, v := .SD %>% 
  lapply(between, pmax(0, ExpPerf_2019*0.5), ExpPerf_2019*1.5) %>%
  Reduce(f=`&`) %>%
  not
, .SDcols=grep("^Perf_", names(dt), value=TRUE)]

not!的重新标记,由magrittr提供,以方便使用。

.SDj的{​​{1}}部分内部操作的数据子集的特殊符号。在这种情况下,没有DT[i, j, by]i,因此仅by被子集(以选择感兴趣的列)。

评论

  • 如果OP选择以长格式格式化数据,则代码将更简单。
  • 我的答案使用与Gilean相同的步骤,但是是矢量化的,而不是按行计算。

答案 1 :(得分:2)

您可以使用以下代码检查两个条件:

dt[, FLAG := any(.SD < 0 | .SD < ExpPerf_2019 - .5*ExpPerf_2019 | .SD > ExpPerf_2019 + .5*ExpPerf_2019),
   by = Id,
   .SDcols = grep("^Perf", colnames(dt), value = TRUE)
   ]

结果:

> dt
    Id Name Type Sold Baseline Perf_2016 Perf_2017 Perf_2018 ExpPerf_2019  FLAG
1: N23 ABCD    T  500     2000      -200       500      1000         1500  TRUE
2: N34 ACBD    B  300     2100       420       300       400          380 FALSE
3: N11 ACCD    B  350     2000       800       -20       600          500  TRUE
4: N65 ADBN    T  500     1500       900       700       800          850 FALSE
5: N55 ADDD    T  350     1890       -10        50        40           30  TRUE
6: N78 DBCA    B  400     1900        75        80       500          400  TRUE
7: N88 CBDA    B  450     2000       400       370       300          350 FALSE