我正在尝试使用Foreach Sink使用Spark Structure Streaming将反序列化的Kafka记录插入到Data Stax Cassandra中。
例如,我所有反序列化的数据帧数据都是字符串格式。
id name date
100 'test' sysdate
使用foreach Sink,我创建了一个类,并尝试通过转换以下内容来插入记录。
session.execute(
s"""insert into ${cassandraDriver.namespace}.${cassandraDriver.brand_dub_sink} (id,name,date)
values ('${row.getAs[Long](0)}','${rowstring(1)}','${rowstring(2)}')"""))
}
)
如上所述,当插入Cassandra表时,将字符串“ id”列数据类型转换为Long时,没有进行转换。并抛出错误
“ bigint类型的“ id”的STRING常量(100)无效”
卡桑德拉表;-
create table test(
id bigint,
name text,
date timestamp)
在“ def Process”中将字符串数据类型转换为Long的任何建议。
任何其他建议也将很棒。谢谢
这是代码:
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.sql._
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
import org.apache.spark.sql.ForeachWriter
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.functions.expr
class CassandraSinkForeach() extends ForeachWriter[org.apache.spark.sql.Row] {
// This class implements the interface ForeachWriter, which has methods that get called
// whenever there is a sequence of rows generated as output
var cassandraDriver: CassandraDriver = null;
def open(partitionId: Long, version: Long): Boolean = {
// open connection
println(s"Open connection")
true
}
def process(record: org.apache.spark.sql.Row) = {
println(s"Process new $record")
if (cassandraDriver == null) {
cassandraDriver = new CassandraDriver();
}
cassandraDriver.connector.withSessionDo(session =>
session.execute(s"""
insert into ${cassandraDriver.namespace}.${cassandraDriver.foreachTableSink} (fx_marker, timestamp_ms, timestamp_dt)
values('${record.getLong(0)}', '${record(1)}', '${record(2)}')""")
)
}
def close(errorOrNull: Throwable): Unit = {
// close the connection
println(s"Close connection")
}
}
class SparkSessionBuilder extends Serializable {
// Build a spark session. Class is made serializable so to get access to SparkSession in a driver and executors.
// Note here the usage of @transient lazy val
def buildSparkSession: SparkSession = {
@transient lazy val conf: SparkConf = new SparkConf()
.setAppName("Structured Streaming from Kafka to Cassandra")
.set("spark.cassandra.connection.host", "ec2-52-23-103-178.compute-1.amazonaws.com")
.set("spark.sql.streaming.checkpointLocation", "checkpoint")
@transient lazy val spark = SparkSession
.builder()
.config(conf)
.getOrCreate()
spark
}
}
class CassandraDriver extends SparkSessionBuilder {
// This object will be used in CassandraSinkForeach to connect to Cassandra DB from an executor.
// It extends SparkSessionBuilder so to use the same SparkSession on each node.
val spark = buildSparkSession
import spark.implicits._
val connector = CassandraConnector(spark.sparkContext.getConf)
// Define Cassandra's table which will be used as a sink
/* For this app I used the following table:
CREATE TABLE fx.spark_struct_stream_sink (
id Bigint,
name text,
timestamp_dt date,
primary key (id));
*/
val namespace = "fx"
val foreachTableSink = "spark_struct_stream_sink"
}
object KafkaToCassandra extends SparkSessionBuilder {
// Main body of the app. It also extends SparkSessionBuilder.
def main(args: Array[String]) {
val spark = buildSparkSession
import spark.implicits._
// Define location of Kafka brokers:
val broker = "ec2-18-209-75-68.compute-1.amazonaws.com:9092,ec2-18-205-142-57.compute-1.amazonaws.com:9092,ec2-50-17-32-144.compute-1.amazonaws.com:9092"
/*Here is an example massage which I get from a Kafka stream. It contains multiple jsons separated by \n
{"100": "test1", "01-mar-2018"}
{"101": "test2", "02-mar-2018"} */
val dfraw = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", broker)
.option("subscribe", "currency_exchange")
.load()
val schema = StructType(
Seq(
StructField("id", StringType, false),
StructField("name", StringType, false),
StructField("date", StringType, false)
)
)
val df = dfraw
.selectExpr("CAST(value AS STRING)").as[String]
.flatMap(_.split("\n"))
val jsons = df.select(from_json($"value", schema) as "data").select("data.*")
val sink = jsons
.writeStream
.queryName("KafkaToCassandraForeach")
.outputMode("update")
.foreach(new CassandraSinkForeach())
.start()
sink.awaitTermination()
}
}
我修改的代码;-
def open(partitionId: Long, version: Long): Boolean = {
// open connection
println(s"in my Open connection")
val cassandraDriver = new CassandraDriver();
true
}
def process(record: Row) = {
val optype = record(0)
if (cassandraDriver == null) {
val cassandraDriver = new CassandraDriver();
}
if (optype == "I" || optype == "U") {
println(s"Process insert or Update Idempotent new $record")
cassandraDriver.connector.withSessionDo(session =>{
val prepare_rating_brand = session.prepare(s"""insert into ${cassandraDriver.namespace}.${cassandraDriver.brand_dub_sink} (table_name,op_type,op_ts,current_ts,pos,brand_id,brand_name,brand_creation_dt,brand_modification_dt,create_date) values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)""")
session.execute(prepare_rating_brand.bind(record.getAs[String](0),record.getAs[String](1),record.getAs[String](2),record.getAs[String](3),record.getAs[String](4),record.getAs[BigInt](5),record.getAs[String](6),record.getAs[String](7),record.getAs[String](8),record.getAs[String](9))
)
})
} else if (optype == "D") {
println(s"Process delete new $record")
cassandraDriver.connector.withSessionDo(session =>
session.execute(s"""DELETE FROM ${cassandraDriver.namespace}.${cassandraDriver.brand_dub_sink} WHERE brand_id = ${record.getAs[Long](5)}"""))
} else if (optype == "T") {
println(s"Process Truncate new $record")
cassandraDriver.connector.withSessionDo(session =>
session.execute(s"""Truncate table ${cassandraDriver.namespace}.${cassandraDriver.plan_rating_archive_dub_sink}"""))
}
}
def close(errorOrNull: Throwable): Unit = {
// close the connection
println(s"Close connection")
}
}
答案 0 :(得分:0)
您的错误是您将id
字段的值指定为'${row.getAs[Long](0)}'
-您在其周围加上了单引号,因此将其视为字符串,而不是long
/ { {1}}-只需删除此值附近的单引号即可:bigint
...
出于性能原因,最好将cassandra驱动程序的实例化为${row.getAs[Long](0)}
方法,并使用准备好的语句,如下所示:
open
这将表现得更好,并且您无需自己对值进行引用。