我正在创建一个新的python类,在其中尝试集成多处理以及tqdm以说明进度。我之所以走这条路,是因为我要打开非常大(> 1GB)的时间序列数据文件,将其加载到熊猫中,进行分组,然后将它们保存为镶木地板格式。每个数据文件可能需要几分钟来处理和保存。多重处理极大地加快了处理速度。但是,我目前对该过程没有任何了解,并且我正在尝试集成tqdm。
下面的代码说明了一个简单的示例。在这段代码中,tqdm仅显示了将进程分配到池所花费的时间,但不会根据实际进程进行更新。
'''python
import time
import multiprocessing
from tqdm import tqdm
class test_multiprocessing(object):
def __init__(self, *args, **kwargs):
self.list_of_results=[]
self.items = [0,1,2,3,4,5,6,7,8,9,10]
def run_test(self):
print(f'Startng test')
for i in range(1,5,1):
print(f'working on var1: {i}')
p = multiprocessing.Pool()
for j in tqdm(self.items, desc='Items', unit='items', disable=False):
variable3=3.14159
p.apply_async(self.worker, [i, j,variable3], callback=self.update)
p.close()
p.join()
print(f'completed i = {i}')
print(f'')
def worker(self, var1, var2, var3):
result=var1*var2*var3
time.sleep(2)
return result
def update(self, result_to_save):
self.list_of_results.append(result_to_save)
if __name__ == '__main__':
test1=test_multiprocessing()
test1.run_test()
'''
在此示例中,进度条将几乎立即显示工作已完成,但实际上需要花费几秒钟
答案 0 :(得分:0)
通过并发。未来与多处理,我找到了解决该问题的好方法。 Dan Shiebler为此写了一个不错的博客,并有一个很好的例子http://danshiebler.com/2016-09-14-parallel-progress-bar/
下面显示了这种策略的植入,它解决了我之前提出的问题
import time
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
class test_multiprocessing(object):
def __init__(self, *args, **kwargs):
self.list_of_results=[]
self.items = [0,1,2,3,4,5,6,7,8,9,10]
def run_test(self):
print(f'Startng test')
for i in range(1,5,1):
print(f'working on var1: {i}')
variable_list=[]
for j in self.items:
variable3=3.14159
variables = [i,j,variable3]
variable_list.append(variables)
with ThreadPoolExecutor(max_workers=1000) as pool: # with ProcessPoolExecutor(max_workers=n_jobs) as pool:
futures = [pool.submit(self.worker, a) for a in variable_list]
kwargs = {
'total': len(futures),
'unit': 'it',
'unit_scale': True,
'leave': True
}
#Print out the progress as tasks complete
for f in tqdm(as_completed(futures), **kwargs):
pass
out = []
#Get the results from the futures.
for i, future in tqdm(enumerate(futures)):
try:
self.update(future.result())
except Exception as e:
print(f'We have an error: {e}')
def worker(self, variables):
result=variables[0]*variables[1]*variables[2]
time.sleep(2)
return result
def update(self, result_to_save):
self.list_of_results.append(result_to_save)
if __name__ == '__main__':
test1=test_multiprocessing()
test1.run_test()