我正在将(NMT Tensorflow code)放在主类中。代码库有两个类-“编码器”和“解码器”。它们在各自的“ init”方法中被引用。但是,这会引发错误-“未定义的命名编码器”。
class TranslationModel(ModelBase):
pathToZip = tf.keras.utils.get_file('spa-eng.zip', origin='http://download.tensorflow.org/data/spa-eng.zip', extract=True)
pathToFile = os.path.dirname(pathToZip)+"/spa-eng/spa.txt"
def __init__(self,
batchSize = 64,
bufferSize = None,
numberOfBatches = None,
units = 1024,
vocabInputSize = None,
vocabTargetSize = None,
optimizer = tf.train.AdamOptimizer(),
dataSetPath = None,
inputTensor = None,
targetTensor = None,
inputLanguage = None,
targetLanguage = None,
maxLengthInput = None,
maxLengthTarget = None,
embeddingDimension = 256, *arg, **kwargs):
self.batchSize = 64
self.bufferSize = None
self.numberOfBatches = None
self.units = units
self.vocabInputSize = None
self.vocabTargetSize = None
self.optimizer = optimizer
self.dataSetPath = dataSetPath
self.targetTensor = targetTensor
self.inputTensor = inputTensor
self.inputLanguage = inputLanguage
self.targetLanguage = targetLanguage
self.maxLengthInput = maxLengthInput
self.maxLengthTarget = maxLengthTarget
self.embeddingDimension = embeddingDimension
super().__init__(*arg, **kwargs)
#OTHER FUNCTIONS HERE
class Encoder(tf.keras.Model):
def __init__(self, vocabSize, embeddingDimension, encoderUnits, batchSize):
super(Encoder, self).__init__() # Raises error - 'Undefined named Encoder'
#Other code here
class Decoder(tf.keras.Model):
def __init__(self, vocabSize, embeddingDimension, dec_units, batchSize):
super('Decoder', self).__init__() # Raises error - 'Undefined named Decoder'
## Other code
答案 0 :(得分:0)
这是因为当您在另一个类中有一个类并且要标识它时,您应该采用这种方式:OutterClass.InnerClass
如果仅使用InnerClass则不起作用
在您的情况下为TranslationModel.Encoder