TypeError:hp_choice()接受2个位置参数,但给出了7个

时间:2019-07-11 14:15:37

标签: python keras neural-network hyperopt hyperas

我正在尝试使用hyperas库对该keras模型进行超参数优化,我之前从未做过此操作,因此我基本上遵循了逐步完成的示例here,但是我得到了提到错误。预先感谢。

model = Sequential()

model.add(Conv2D({{choice(32, 64, 128, 256, 512, 1024)}}, 3, 3, border_mode='same',
                 input_shape=input_shape, activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(Conv2D({{choice(32, 64, 128, 256, 512, 1024)}}, 3, 3, border_mode='same',
                 activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D({{choice(32, 64, 128, 256, 512, 1024)}}, 3, 3, border_mode='same',
                 input_shape=input_shape, activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(Conv2D({{choice(32, 64, 128, 256, 512, 1024)}}, 3, 3, border_mode='same',
                 activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D({{choice(32, 64, 128, 256, 512, 1024)}}, 3, 3, border_mode='same',
                 input_shape=input_shape, activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(Conv2D({{choice(32, 64, 128, 256, 512, 1024)}}, 3, 3, border_mode='same',
                 activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D({{choice(32, 64, 128, 256, 512, 1024)}}, 3, 3, border_mode='same',
                 input_shape=input_shape, activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(Conv2D({{choice(32, 64, 128, 256, 512, 1024)}}, 3, 3, border_mode='same',
                 activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense({{choice(32, 64, 128, 256, 512, 1024)}},
                activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(Dropout({{uniform(0, 0.75)}}))

model.add(Dense({{choice(32, 64, 128, 256, 512, 1024)}},
                activation={{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))
model.add(Dropout({{uniform(0, 0.75)}}))

model.add(Dense(1))
model.add(Activation({{choice('relu', 'sigmoid', 'softmax', 'tanh')}}))

model.compile(loss='binary_crossentropy',
              optimizer={{choice(RMSprop, Adam, SGD)}},
              metrics=['accuracy'])
"/home/bjorn/PycharmProjects/Test/HyperoptModel.py", line 113, in
<module>
    trials=Trials())   File "/home/bjorn/PycharmProjects/Test/venv/lib/python3.5/site-packages/hyperas/optim.py",
line 69, in minimize
    keep_temp=keep_temp)   File "/home/bjorn/PycharmProjects/Test/venv/lib/python3.5/site-packages/hyperas/optim.py",
line 134, in base_minimizer
    space=get_space(),   File "/home/bjorn/PycharmProjects/Test/temp_model.py", line 149, in
get_space   File
"/home/bjorn/PycharmProjects/Test/venv/lib/python3.5/site-packages/hyperopt/pyll_utils.py",
line 22, in wrapper
    return f(label, *args, **kwargs) TypeError: hp_choice() takes 2 positional arguments but 7 were given ```

1 个答案:

答案 0 :(得分:1)

您需要将choice的选项作为list而不是多个参数。

更改

choice(32, 64, 128, 256, 512, 1024)

choice([32, 64, 128, 256, 512, 1024])