我是熊猫功能的新手。 我有一个DF,如下所示。这是手机的维修数据。
ID Status Date Cost
0 1 F 22-Jun-17 500
1 1 M 22-Jul-17 100
2 2 M 29-Jun-17 200
3 3 M 20-Mar-17 300
4 4 M 10-Aug-17 800
5 2 F 29-Sep-17 600
6 2 F 29-Jan-18 500
7 1 F 22-Jun-18 600
8 3 F 20-Jun-18 700
9 1 M 22-Aug-18 150
10 1 F 22-Mar-19 750
11 3 M 20-Oct-18 250
12 4 F 10-Jun-18 100
我试图从以前的状态中找出每个ID的持续时间。
找到该ID的每个状态序列的平均值。
我的预期输出如下所示。
ID S1 S1_Dur S2 S2_dur S3 S3_dur S4 S4_dur Avg_MF Avg_FM
0 1 F-M 30 M-F 335.00 F-M 61.00 M-F 750.00 542.50 45.50
1 2 M-F 92 F-F 122.00 NaN nan NaN nan 92.00 nan
2 3 M-F 457 F-M 122.00 NaN nan NaN nan 457.00 122.00
3 4 M-F 304 NaN nan NaN nan NaN nan 304.00 nan
S1 = first sequence
S1_Dur = S1 Duration
Avg_MF = Average M-F Duration
Avg_FMn = Average F-M Duration
我尝试了以下代码
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values(['ID', 'Date', 'Status'])
df = df.reset_index().sort_values(['ID', 'Date', 'Status']).set_index(['ID', 'Status'])
df['Difference'] = df.groupby('ID')['Date'].transform(pd.Series.diff)
df.reset_index(inplace=True)
然后我得到了一个DF,如下图所示
ID Status index Date Cost Difference
0 1 F 0 2017-06-22 500 NaT
1 1 M 1 2017-07-22 100 30 days
2 1 F 7 2018-06-22 600 335 days
3 1 M 9 2018-08-22 150 61 days
4 1 F 10 2019-03-22 750 212 days
5 2 M 2 2017-06-29 200 NaT
6 2 F 5 2017-09-29 600 92 days
7 2 F 6 2018-01-29 500 122 days
8 3 M 3 2017-03-20 300 NaT
9 3 F 8 2018-06-20 700 457 days
10 3 M 11 2018-10-20 250 122 days
11 4 M 4 2017-08-10 800 NaT
12 4 F 12 2018-06-10 100 304 days
那之后我被困住了。
答案 0 :(得分:1)
想法是通过DataFrameGroupBy.diff
创建新的差异列,并将Status
的移动值结合DataFrameGroupBy.shift
。删除S
列中缺少值的行。然后用DataFrame.unstack
用GroupBy.cumcount
整形作为计数器列,按DataFrame.pivot_table
每对S
创建均值,最后使用DataFrame.join
:
df['Date'] = pd.to_datetime(df['Date'], format='%d-%b-%y')
df = df.sort_values(['ID', 'Date', 'Status'])
df['D'] = df.groupby('ID')['Date'].diff().dt.days
df['S'] = df.groupby('ID')['Status'].shift() + '-'+ df['Status']
df = df.dropna(subset=['S'])
df['g'] = df.groupby('ID').cumcount().add(1).astype(str)
df1 = df.pivot_table(index='ID', columns='S', values='D', aggfunc='mean').add_prefix('Avg_')
df2 = df.set_index(['ID', 'g'])[['S','D']].unstack().sort_index(axis=1, level=1)
df2.columns = df2.columns.map('_'.join)
df3 = df2.join(df1).reset_index()
print (df3)
ID D_1 S_1 D_2 S_2 D_3 S_3 D_4 S_4 Avg_F-F Avg_F-M \
0 1 30.0 F-M 335.0 M-F 61.0 F-M 212.0 M-F NaN 45.5
1 2 92.0 M-F 122.0 F-F NaN NaN NaN NaN 122.0 NaN
2 3 457.0 M-F 122.0 F-M NaN NaN NaN NaN NaN 122.0
3 4 304.0 M-F NaN NaN NaN NaN NaN NaN NaN NaN
Avg_M-F
0 273.5
1 92.0
2 457.0
3 304.0