如何解决“无效使用Function(<内置函数abs>)”

时间:2019-07-11 07:51:12

标签: python python-3.x numba

我正在尝试计算重力。结果应该是一个列表,但是出现以下错误:

  

numba.errors.TypingError:在nopython模式管道中失败(步骤:   nopython前端)
  无效使用Function(<内置函数abs>)   参数类型为:(array(float64,1d,C))

@jit(nopython = True)
def gravity_calculator(x, y, h, dx, dy, p):
    calculated_gravity = np.array([])
    for i in range(len(x)):
        cal = 0
        for j in range(len(x)):
            x1 = abs((x[j] - x[i])+0.000001)
            x2 = x1 + dx
            y1 = abs((y[j]-y[i])+0.000001)
            y2 = y1 + dy
            t1 = np.log((y2 + np.sqrt((x2 ** 2) + (y2 ** 2))) / (y2 + np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))))
            t2 = np.log((y1 + np.sqrt((x2 ** 2) + (y1 ** 2))) / (y1 + np.sqrt((x2 ** 2) + (y1 ** 2) + (h[j] ** 2))))
            t3 = np.log((y2 + np.sqrt((x1 ** 2) + (y2 ** 2))) / (y2 + np.sqrt((x1 ** 2) + (y2 ** 2) + (h[j] ** 2))))
            t4 = np.log((y1 + np.sqrt((x1 ** 2) + (y1 ** 2))) / (y1 + np.sqrt((x1 ** 2) + (y1 ** 2) + (h[j] ** 2))))
            t5 = np.log((x2 + np.sqrt((x2 ** 2) + (y2 ** 2))) / (x2 + np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))))
            t6 = np.log((x1 + np.sqrt((x1 ** 2) + (y2 ** 2))) / (x1 + np.sqrt((x1 ** 2) + (y2 ** 2) + (h[j] ** 2))))
            t7 = np.log((x2 + np.sqrt((x2 ** 2) + (y1 ** 2))) / (x2 + np.sqrt((x2 ** 2) + (y1 ** 2) + (h[j] ** 2))))
            t8 = np.log((x1 + np.sqrt((x1 ** 2) + (y1 ** 2))) / (x1 + np.sqrt((x1 ** 2) + (y1 ** 2) + (h[j] ** 2))))
            t9 = np.arcsin(((y2 ** 2) + (h[j] ** 2) + y2 * np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))) / (
                        (y2 + np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))) * np.sqrt((y2 ** 2) + (h[j] ** 2))))
            t10 = np.arcsin(((y2 ** 2) + (h[j] ** 2) + y2 * np.sqrt((x1 ** 2) + (y2 ** 2) + (h[j] ** 2))) / (
                        (y2 + np.sqrt((x1 ** 2) + (y2 ** 2) + (h[j] ** 2))) * np.sqrt((y2 ** 2) + (h[j] ** 2))))
            t11 = np.arcsin(((y1 ** 2) + (h[j] ** 2) + y1 * np.sqrt((x2 ** 2) + (y1 ** 2) + (h[j] ** 2))) / (
                        (y1 + np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))) * np.sqrt((y1 ** 2) + (h[j] ** 2))))
            t12 = np.arcsin(((y1 ** 2) + (h[j] ** 2) + y1 * np.sqrt((x1 ** 2) + (y1 ** 2) + (h[j] ** 2))) / (
                        (y1 + np.sqrt((x1 ** 2) + (y1 ** 2) + (h[j] ** 2))) * np.sqrt((y1 ** 2) + (h[j] ** 2))))
            G = (x2 * (t1 - t2) - x1 * (t3 - t4) + y2 * (t5 - t6) - y1 * (t7 - t8) + h[j] * (t9 - t10 - t11 + t12))
            cal = cal +(p * G)
        calc = cal * 0.00667
        np.append(calculated_gravity,calc)
    return calculated_gravity

result = gravity_calculator(xi,yi,initial_depth,dx,dy,-0.4)
print(result)

2 个答案:

答案 0 :(得分:0)

abs()仅接受一个参数,该参数的绝对值将被返回。该参数可以是整数,浮点数或复数。
试试:

np.absolute()

答案 1 :(得分:0)

我不是100%知道函数的输入类型是什么,但是我稍微重新写了一下,因为看起来您根本不需要append。只需将calculated_gravity数组预先分配给正确的大小即可。通常,这也应该更快,而不是附加:

import numpy as np
import numba as nb


def gravity_calculator(x, y, h, dx, dy, p):
    calculated_gravity = np.empty(len(x))
    for i in range(len(x)):
        cal = 0
        for j in range(len(x)):
            x1 = abs((x[j] - x[i])+0.000001)
            x2 = x1 + dx
            y1 = abs((y[j]-y[i])+0.000001)
            y2 = y1 + dy
            t1 = np.log((y2 + np.sqrt((x2 ** 2) + (y2 ** 2))) / (y2 + np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))))
            t2 = np.log((y1 + np.sqrt((x2 ** 2) + (y1 ** 2))) / (y1 + np.sqrt((x2 ** 2) + (y1 ** 2) + (h[j] ** 2))))
            t3 = np.log((y2 + np.sqrt((x1 ** 2) + (y2 ** 2))) / (y2 + np.sqrt((x1 ** 2) + (y2 ** 2) + (h[j] ** 2))))
            t4 = np.log((y1 + np.sqrt((x1 ** 2) + (y1 ** 2))) / (y1 + np.sqrt((x1 ** 2) + (y1 ** 2) + (h[j] ** 2))))
            t5 = np.log((x2 + np.sqrt((x2 ** 2) + (y2 ** 2))) / (x2 + np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))))
            t6 = np.log((x1 + np.sqrt((x1 ** 2) + (y2 ** 2))) / (x1 + np.sqrt((x1 ** 2) + (y2 ** 2) + (h[j] ** 2))))
            t7 = np.log((x2 + np.sqrt((x2 ** 2) + (y1 ** 2))) / (x2 + np.sqrt((x2 ** 2) + (y1 ** 2) + (h[j] ** 2))))
            t8 = np.log((x1 + np.sqrt((x1 ** 2) + (y1 ** 2))) / (x1 + np.sqrt((x1 ** 2) + (y1 ** 2) + (h[j] ** 2))))
            t9 = np.arcsin(((y2 ** 2) + (h[j] ** 2) + y2 * np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))) / (
                        (y2 + np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))) * np.sqrt((y2 ** 2) + (h[j] ** 2))))
            t10 = np.arcsin(((y2 ** 2) + (h[j] ** 2) + y2 * np.sqrt((x1 ** 2) + (y2 ** 2) + (h[j] ** 2))) / (
                        (y2 + np.sqrt((x1 ** 2) + (y2 ** 2) + (h[j] ** 2))) * np.sqrt((y2 ** 2) + (h[j] ** 2))))
            t11 = np.arcsin(((y1 ** 2) + (h[j] ** 2) + y1 * np.sqrt((x2 ** 2) + (y1 ** 2) + (h[j] ** 2))) / (
                        (y1 + np.sqrt((x2 ** 2) + (y2 ** 2) + (h[j] ** 2))) * np.sqrt((y1 ** 2) + (h[j] ** 2))))
            t12 = np.arcsin(((y1 ** 2) + (h[j] ** 2) + y1 * np.sqrt((x1 ** 2) + (y1 ** 2) + (h[j] ** 2))) / (
                        (y1 + np.sqrt((x1 ** 2) + (y1 ** 2) + (h[j] ** 2))) * np.sqrt((y1 ** 2) + (h[j] ** 2))))
            G = (x2 * (t1 - t2) - x1 * (t3 - t4) + y2 * (t5 - t6) - y1 * (t7 - t8) + h[j] * (t9 - t10 - t11 + t12))
            cal = cal +(p * G)
        calc = cal * 0.00667
        calculated_gravity[i] = calc
    return calculated_gravity


gravity_calculator_jit = nb.jit(nopython=True)(gravity_calculator)

然后我使用以下方法进行了测试:

xi = np.random.normal(size=(10,))
yi = np.random.normal(size=(10,))
initial_depth = np.random.normal(size=(10,))
dx = 1.0
dy = 1.0

print(np.allclose(
    gravity_calculator(xi,yi,initial_depth,dx,dy,-0.4), 
    gravity_calculator_jit(xi,yi,initial_depth,dx,dy,-0.4)))
# True

还请注意,在原始功能中使用np.append(...)时,您需要像这样使用它:

calculated_gravity = np.append(calculated_gravity,calc)

,因为它不能就地运行。参见:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.append.html