输入:一组十个“元音”,一组十个“辅音”,图像数据集,在每个图像中都写入了一个元音和一个辅音。
任务:从给定图像中识别元音和辅音。
方法:首先在图像上应用CNN隐藏层,然后应用两个并行的完全连接/密集层,其中一层将图像中的元音分类,另一层将图像中的辅音分类。
问题:我正在使用像VGG或GoogleNet这样的预训练模型。如何修改该预训练模型以应用两个平行的密集层并返回两个输出。
我尝试了两种不同的模型,但我的查询是我们是否可以修改此任务的预训练模型。
现在,我的模型只有一层“ fc”。我在最后的“ fc”层修改了神经元的数量,像这样
final_in_features = googlenet.fc.in_features
googlenet.fc = nn.Linear(final_in_features, 10)
但是我需要再增加一层fc层,以便两个“ fc”层都与隐藏层并行连接。
现在模型仅返回一个输出。
outputs1 = googlenet(inputs)
任务是从两个“ fc”层返回两个输出,因此它应该看起来像这样
outputs1, outputs2 = googlenet(inputs)
答案 0 :(得分:1)
以下是Pytorch中线性层的来源:
class Linear(Module):
r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
additional dimensions and :math:`H_{in} = \text{in\_features}`
- Output: :math:`(N, *, H_{out})` where all but the last dimension
are the same shape as the input and :math:`H_{out} = \text{out\_features}`.
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in\_features})`. The values are
initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
:math:`k = \frac{1}{\text{in\_features}}`
Examples::
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
__constants__ = ['bias']
def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
@weak_script_method
def forward(self, input):
return F.linear(input, self.weight, self.bias)
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
您可以像这样创建DoubleLinear类:
class DoubleLinear(Module):
def __init__(self, Linear1, Linear2):
self.Linear1 = Linear1
self.Linear2 = Linear2
@weak_script_method
def forward(self, input):
return self.Linear1(input), self.Linear2(input)
然后,创建两个线性层:
Linear_vow = nn.Linear(final_in_features, 10)
Linear_con = nn.Linear(final_in_features, 10)
final_layer = DoubleLinear(Linear_vow, Linear_con)
现在outputs1, outputs2 = final_layer(inputs)
将按预期工作。
答案 1 :(得分:0)
class DoubleLinear(torch.nn.Module):
def __init__(self, Linear1, Linear2):
super(DoubleLinear, self).__init__()
self.Linear1 = Linear1
self.Linear2 = Linear2
def forward(self, input):
return self.Linear1(input), self.Linear2(input)
in_features = model._fc.in_features
Linear_first = nn.Linear(in_features, 10)
Linear_second = nn.Linear(in_features, 5)
model._fc = DoubleLinear(Linear_first, Linear_second)