我正在尝试预测每日通话次数。拥有每日数据(从2015年开始),显示每周和每年的季节性。
我尝试了带有ARIMA错误的动态谐波回归。该模型大大降低了银行假期的电话预测数量,因此我创建了一些虚拟变量:新年,五月初的银行假期,圣诞节等。但这是行不通的。
ft <- fourier(calls, K=c(3,10))
model1<- auto.arima(calls, seasonal=FALSE, lambda=0,
xreg=cbind(ft, NY, GoodFriday, EasterMonday,EarlyMayBH,
SpringBH,ChristmasEve, ChristDay, BoxingDay, NYEve))
model1_forc <- forecast(model1,
xreg=cbind(ft,
NY=c(1,0,0,0,0,0,0,0,0,0,0,0,0,0),
GoodFriday=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0),
EasterMonday=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0),
EarlyMayBH=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0),
SpringBH=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0),
ChristmasEve=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0),
ChristDay=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0),
BoxingDay=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0),
NYEve=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0)))
autoplot(model1_forc)
summary(model1_forc)
我得到了预测,但不是很好。