我有2个数据框:var minDate = dateDim.bottom(1)[0].day; // Date object
var maxDate = dateDim.top(1)[0].day;
.x(d3.scaleTime().domain([minDate, maxDate]))
和url,df_mentions
和url。
我需要不断使用媒体中包含的信息更新media
。
df_mentions
媒体
并且我需要检查链接的来源是否包含在媒体中,并从链接中提取数据以填充df_mentions并获得以下结果:
我所做的是:
Mentions=['https://www.lemonde.fr/football/article/2019/07/08/coupe-du-monde-feminine-2109-au-sein-de-chaque-equipe-j-ai-vu-de-grandes-joueuses_5486741_1616938.html','https://www.telegraph.co.uk/world-cup/2019/06/12/womens-world-cup-2019-groups-complete-guide-teams-players-rankings/','https://www.washingtonpost.com/sports/dcunited/us-womens-world-cup-champs-arrive-home-ahead-of-parade/2019/07/08/48df1a84-a1e3-11e9-a767-d7ab84aef3e9_story.html?utm_term=.8f474bba8a1a']
Date=['08/07/2019','08/07/2019','08/07/2019']
Publication=['','','']
Country=['','','']
Foundation=['','','']
Is_in_media=['','','']
df_mentions=pd.DataFrame()
df_mentions['Mentions']=Mentions
df_mentions['Date']=Date
df_mentions['Source']=Source
df_mentions['Country']=Country
df_mentions['Foundation']=Foundation
df_mentions['Is_in_media']=Is_in_media
Source=['New York times','Lemonde','Washington Post']
Link=['https://www.nytimes.com/','https://www.lemonde.fr/','https://www.washingtonpost.com/']
Country=['USA','France','USA']
Foundation=['1851','1944','1877']
media=pd.DataFrame()
media['Source']=Source
media['Link']=Link
media['Country']=Country
media['Foundation']=Foundation
media
但是它一次可以在我的笔记本电脑上工作,如果我关闭笔记本电脑会出现错误,则我正在使用Pandas 0.24.0。 有没有更好的方法来做到这一点并让它一直工作?
提前谢谢! 所有帮助将不胜感激!
答案 0 :(得分:1)
您可以做的一件事是提取df_mentions
中的URL并将其用作合并的键
开始数据(已删除df_mentions
中的空列)
print(df_mentions)
Mentions Date
0 https://www.lemonde.fr/football/article/2019/0... 08/07/2019
1 https://www.telegraph.co.uk/world-cup/2019/06/... 08/07/2019
2 https://www.washingtonpost.com/sports/dcunited... 08/07/2019
print(media)
Source Link Country Foundation
0 New York times https://www.nytimes.com/ USA 1851
1 Lemonde https://www.lemonde.fr/ France 1944
2 Washington Post https://www.washingtonpost.com/ USA 1877
创建一个包含基本网址的新列:
df_mentions['url'] = df_mentions['Mentions'].str.extract(r'(http[s]?:\/\/.+?\/)')
Mentions Date url
0 https://www.lemonde.fr/football/articl... 08/07/2019 https://www.lemonde.fr/
1 https://www.telegraph.co.uk/world-cup/... 08/07/2019 https://www.telegraph.co.uk/
2 https://www.washingtonpost.com/sports/... 08/07/2019 https://www.washingtonpost.com/
在合并时使用该新列作为键:
df_mentions.merge(media,
left_on='url',
right_on='Link',
how='left').drop(columns=['url', 'Link'])
Mentions Date Source Country Foundation
0 https://www.lemonde.fr/football/art... 08/07/2019 Lemonde France 1944
1 https://www.telegraph.co.uk/world-c... 08/07/2019 NaN NaN NaN
2 https://www.washingtonpost.com/spor... 08/07/2019 Washington Post USA 1877