QnA制造商的机器人易于实施,并具有很高的价值。在某些情况下,我需要向QnaMaker机器人添加一个对话框。我正在努力做到这一点的最佳方法。我尝试过的所有示例均始于非QnAmaker主对话框。
我的目标是在QnA服务(#contact)做出一定回答后开始对话(获取联系方式)。一些指导表示赞赏。
我创建了一个对话框组件来检索用户个人资料。我以多提示示例为指导。该对话框确实在QnAMaker查询的特定结果之后开始。
// user requests to be contacted
case '#Contact': {
await this.dialog.run(turnContext, this.dialogState);
break;
对话框集的第一步开始。输入响应后,该过程将失败。答案将再次发送到QnA服务,而不用作对话框组件中下一步的输入(结果)。
我希望原因是所有结果都由onTurn处理程序发送到QnA服务。
我的问题:
甚至可以做到这一点。我能否(无需过多重构)从QnA机器人启动简单对话框。
是否可以检查是否存在活动的对话框。如果是这样,我也许可以通过使用它来解决。
我正在考虑这样的事情:
this.onMessage(async (context, next) => {
console.log('Any active Dialog we need to finish?');
AciveDialog ? ResumeDialog : const qnaResults = await this.qnaMaker.getAnswers(context);
文档和示例不是很有帮助,因此非常感谢任何帮助。
直到现在我的机器人代码。我没有链接对话框组件,因为我希望这不会成为问题的一部分。
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
// Microsoft Bot Framework components
const { AttachmentLayoutTypes, ActivityTypes, ActivityHandler, CardFactory } = require('botbuilder');
const { QnAMaker } = require('botbuilder-ai');
// Making sure the time is mentioned correctly
const moment = require('moment-timezone');
require('moment/locale/nl');
// Helper funtions (forecast, welcome-message, cards, storage)
const helper = require('./helper');
// Introcard for welcome message
const IntroCard = require('./resources/IntroCard.json');
class QnAMakerBot extends ActivityHandler {
constructor(endpoint, qnaOptions, conversationState, userState, dialog) {
super();
this.qnaMaker = new QnAMaker(endpoint, qnaOptions);
this.conversationState = conversationState;
this.userState = userState;
this.dialog = dialog;
this.dialogState = this.conversationState.createProperty('DialogState');
}
async onTurn(turnContext) {
// First check if a new user joined the webchat, if so, send a greeting message to the user.
if (turnContext.activity.name === 'webchat/join') {
await turnContext.sendActivity({ type: 'typing' });
await turnContext.sendActivity({
attachments: [CardFactory.adaptiveCard(IntroCard)]
});
};
// if a user sent a message, show some response (1) and construct an answer (2).
if (turnContext.activity.type === ActivityTypes.Message) {
// (1)typing indicator with a short delay to improve user experience
await turnContext.sendActivity({ type: 'typing' });
// (2) Perform a call to the QnA Maker service to retrieve matching Question and Answer pairs.
const qnaResults = await this.qnaMaker.getAnswers(turnContext);
// for learning purposes store all questions with qnaMaker score.
if (turnContext.activity.name !== 'webchat/join') {
let score = (qnaResults[0] != null) ? qnaResults[0].score : 'No answer found';
helper.storeQuestions(turnContext, score);
};
// If QnAMaker found an answer that might be correct, first check for responses that need additional work
// If so, do the additional work, otherwise (default) send the QnA answer to the user
if (qnaResults[0] && qnaResults[0].score > 0.5) {
switch (qnaResults[0].answer) {
// user requests a weatherforecast
case '#Weather': {
var weatherForecast = await helper.getWeatherForecast(turnContext);
await turnContext.sendActivity({
attachments: [CardFactory.adaptiveCard(weatherForecast)]
});
break;
}
// user requests current date and/or time
case '#DateTime': {
await turnContext.sendActivity(moment().tz('Europe/Amsterdam').format('[Today is ]LL[ and the time is ] LT'));
break;
}
// user requests help or a startmenu
case '#Help': {
await turnContext.sendActivity({
attachments: [CardFactory.adaptiveCard(IntroCard)]
});
break;
}
// user requests an overview of current bots
case '#Bots': {
await turnContext.sendActivity({
attachments: helper.createBotsGallery(turnContext),
attachmentLayout: AttachmentLayoutTypes.Carousel
});
break;
}
// user requests to be contacted. This is were the magic should happen ;-)
case '#Contact': {
await this.dialog.run(turnContext, this.dialogState);
break;
}
// if no 'special' requests, send the answer found in QnaMaker
default: {
await turnContext.sendActivity(qnaResults[0].answer);
break;
}
}
// QnAmaker did not find an answer with a high probability
} else {
await turnContext.sendActivity('Some response');
}
}
}
async onMessage(turnContext, next) {
// Run the Dialog with the new message Activity.
await this.dialog.run(turnContext, this.dialogState);
await next();
};
async onDialog(turnContext, next) {
// Save any state changes. The load happened during the execution of the Dialog.
await this.conversationState.saveChanges(turnContext, false);
await this.userState.saveChanges(turnContext, false);
await next();
};
}
module.exports.QnAMakerBot = QnAMakerBot;
答案 0 :(得分:1)
最简单的方法是使用botbuilder-dialogs库https://github.com/microsoft/botbuilder-js/tree/master/libraries/botbuilder-dialogs
使用botbuilder预先打包的库/对话框类会更容易,然后尝试从头开始做。简单提示之类的东西很容易获得。
Botbuilder-Samples存储库具有特定于功能的示例,因此您不会因浏览大型bot代码或阅读Microsoft令人困惑的文档来查找所需内容而感到不知所措。
您似乎只是想提示输入内容,因此可以满足您的需求 https://github.com/microsoft/BotBuilder-Samples/tree/master/samples/javascript_nodejs/44.prompt-for-user-input
答案 1 :(得分:1)
您可以通过使用component dialogs来实现这一点。
在下面的示例中,我有一个组件对话框,可以“监听”用户输入。在这种情况下,让用户输入与获取用户名有关的内容。如果存在匹配项,它将进行QnA调用以检索答案/响应。检索并显示答案后,机器人将开始一个中间(子级)对话框,然后返回主对话框。
首先,在成功的QnA响应之后,创建要路由到的组件对话框。我已将此文件命名为“ getUserNameDialog.js”。
const {
TextPrompt,
ComponentDialog,
WaterfallDialog
} = require('botbuilder-dialogs');
const GET_USER_NAME_DIALOG = 'GET_USER_NAME_DIALOG';
const TEXT_PROMPT = 'TEXT_PROMPT';
const WATERFALL_DIALOG = 'WATERFALL_DIALOG';
class GetUserNameDialog extends ComponentDialog {
constructor() {
super(GET_USER_NAME_DIALOG);
this.addDialog(new TextPrompt(TEXT_PROMPT));
this.addDialog(new WaterfallDialog(WATERFALL_DIALOG, [
this.getNameStep.bind(this),
this.displayNameStep.bind(this)
]));
this.initialDialogId = WATERFALL_DIALOG;
}
async getNameStep(stepContext) {
return await stepContext.prompt(TEXT_PROMPT, "Let's makeup a user name for fun. Enter something.");
// return stepContext.next();
}
async displayNameStep(stepContext) {
const stepResults = stepContext.result;
await stepContext.context.sendActivity(`${ stepResults } is a fine name!`);
return stepContext.endDialog();
}
}
module.exports.GetUserNameDialog = GetUserNameDialog;
module.exports.GET_USER_NAME_DIALOG = GET_USER_NAME_DIALOG;
接下来,创建QnA对话框(我将其命名为qnaResponseDialog.js)。我的QnA凭据存储在.env文件中,可从中获取它们。请注意,我需要上面创建的“ getUserNameDialog”文件。
当QnA出现匹配/响应时(我正在寻找对“用户名”的引用),然后调用beginDialog()来启动子对话框。我通过映射QnA响应内返回的问题并在用户输入上进行匹配来做到这一点。如果任何一个问题中都包含“用户”和/或“名称”,那么我将返回true。如果为true,则返回QnA响应并开始子对话框。
此匹配过程非常简单,并且更多用于演示,但是如果对您有用,那就太好了。但是,我建议您考虑使用LUIS来匹配用户意图。它将使此过程更加清洁和易于维护。
const { ComponentDialog } = require('botbuilder-dialogs');
const { QnAMaker } = require('botbuilder-ai');
const { GetUserNameDialog, GET_USER_NAME_DIALOG } = require('./getUserNameDialog');
class QnAResponseDialog extends ComponentDialog {
constructor() {
super(GET_USER_NAME_DIALOG);
this.addDialog(new GetUserNameDialog());
try {
this.qnaMaker = new QnAMaker({
knowledgeBaseId: process.env.QnAKnowledgebaseId,
endpointKey: process.env.QnAAuthKey,
host: process.env.QnAEndpointHostName
});
} catch (err) {
console.warn(`QnAMaker Exception: ${ err } Check your QnAMaker configuration in .env`);
}
}
async onBeginDialog(innerDc, options) {
const result = await this.interrupt(innerDc);
if (result) {
return result;
}
return await super.onBeginDialog(innerDc, options);
}
async onContinueDialog(innerDc) {
const result = await this.interrupt(innerDc);
if (result) {
return result;
}
return await super.onContinueDialog(innerDc);
}
async interrupt(innerDc) {
if (innerDc.context.activity.type === 'message') {
const text = innerDc.context.activity.text.toLowerCase();
const stepResults = innerDc.context;
let qnaResults = await this.qnaMaker.getAnswers(stepResults);
console.log(qnaResults[0]);
stepResults.qna = qnaResults[0];
if (qnaResults[0]) {
let mappedResult = null;
const includesText = qnaResults[0].questions.map((question) => {
if (text.includes('user') || text.includes('name')) {
mappedResult = true;
} else {
mappedResult = false;
}
console.log('RESULTS: ', mappedResult);
});
console.log('MAPPED: ', mappedResult);
switch (mappedResult) {
case true:
let answer = stepResults.qna.answer;
await innerDc.context.sendActivity(answer);
return await innerDc.beginDialog(GET_USER_NAME_DIALOG);
}
}
}
}
}
module.exports.QnAResponseDialog = QnAResponseDialog;
最后,在您的主对话框或顶级对话框中,包括以下内容:
const { QnAResponseDialog } = require('./qnaResponseDialog');
class MainDialg extends QnAResponseDialog {
[...]
}
在这一点上,如果所有配置正确,则当用户键入一个短语时,QnA会识别并接受该短语,这将中断当前对话框,显示QnA响应,开始子组件对话框,并在完成后返回到父级对话框。