在创建迭代(非递归)函数后,对于具有少量RAM(但EPROM较大)的微控制器,按字典顺序枚举双重受限compositions of positive integers ,我必须将限制数量扩展到3,即:
下面列出了生成双重限制合成的原始函数:
void GenCompositions(unsigned int myInt, unsigned int CompositionLen, unsigned int MinVal)
{
if ((MinVal = MinPartitionVal(myInt, CompositionLen, MinVal, unsigned int (-1))) == unsigned int(-1)) // Increase the MinVal to the minimum that is feasible.
return;
std::vector<unsigned int> v(CompositionLen);
int pos = 0;
const int last = CompositionLen - 1;
for (unsigned int i = 1; i <= last; ++i) // Generate the initial composition
v[i] = MinVal;
unsigned int MaxVal = myInt - MinVal * last;
v[0] = MaxVal;
do
{
DispVector(v);
if (pos == last)
{
if (v[last] == MaxVal)
break;
for (--pos; v[pos] == MinVal; --pos); //Search for the position of the Least Significant non-MinVal (not including the Least Significant position / the last position).
//std::cout << std::setw(pos * 3 + 1) << "" << "v" << std::endl; //DEBUG
--v[pos++];
if (pos != last)
{
v[pos] = v[last] + 1;
v[last] = MinVal;
}
else
v[pos] += 1;
}
else
{
--v[pos];
v[++pos] = MinVal + 1;
}
} while (true);
}
此功能的示例输出为:
GenCompositions(10,4,1);:
7, 1, 1, 1
6, 2, 1, 1
6, 1, 2, 1
6, 1, 1, 2
5, 3, 1, 1
5, 2, 2, 1
5, 2, 1, 2
5, 1, 3, 1
5, 1, 2, 2
5, 1, 1, 3
4, 4, 1, 1
4, 3, 2, 1
4, 3, 1, 2
4, 2, 3, 1
4, 2, 2, 2
4, 2, 1, 3
4, 1, 4, 1
4, 1, 3, 2
4, 1, 2, 3
4, 1, 1, 4
3, 5, 1, 1
3, 4, 2, 1
3, 4, 1, 2
3, 3, 3, 1
3, 3, 2, 2
3, 3, 1, 3
3, 2, 4, 1
3, 2, 3, 2
3, 2, 2, 3
3, 2, 1, 4
3, 1, 5, 1
3, 1, 4, 2
3, 1, 3, 3
3, 1, 2, 4
3, 1, 1, 5
2, 6, 1, 1
2, 5, 2, 1
2, 5, 1, 2
2, 4, 3, 1
2, 4, 2, 2
2, 4, 1, 3
2, 3, 4, 1
2, 3, 3, 2
2, 3, 2, 3
2, 3, 1, 4
2, 2, 5, 1
2, 2, 4, 2
2, 2, 3, 3
2, 2, 2, 4
2, 2, 1, 5
2, 1, 6, 1
2, 1, 5, 2
2, 1, 4, 3
2, 1, 3, 4
2, 1, 2, 5
2, 1, 1, 6
1, 7, 1, 1
1, 6, 2, 1
1, 6, 1, 2
1, 5, 3, 1
1, 5, 2, 2
1, 5, 1, 3
1, 4, 4, 1
1, 4, 3, 2
1, 4, 2, 3
1, 4, 1, 4
1, 3, 5, 1
1, 3, 4, 2
1, 3, 3, 3
1, 3, 2, 4
1, 3, 1, 5
1, 2, 6, 1
1, 2, 5, 2
1, 2, 4, 3
1, 2, 3, 4
1, 2, 2, 5
1, 2, 1, 6
1, 1, 7, 1
1, 1, 6, 2
1, 1, 5, 3
1, 1, 4, 4
1, 1, 3, 5
1, 1, 2, 6
1, 1, 1, 7
添加第三个限制(元素的最大值)后,该功能的复杂性显着增加。下面列出了此扩展功能:
void GenCompositions(unsigned int myInt, unsigned int CompositionLen, unsigned int MinVal, unsigned int MaxVal)
{
if ((MaxVal = MaxPartitionVal(myInt, CompositionLen, MinVal, MaxVal)) == 0) //Decrease the MaxVal to the maximum that is feasible.
return;
if ((MinVal = MinPartitionVal(myInt, CompositionLen, MinVal, MaxVal)) == unsigned int(-1)) //Increase the MinVal to the minimum that is feasible.
return;
std::vector<unsigned int> v(CompositionLen);
unsigned int last = CompositionLen - 1;
unsigned int rem = myInt - MaxVal - MinVal*(last-1);
unsigned int pos = 0;
v[0] = MaxVal; //Generate the most significant element in the initial composition
while (rem > MinVal){ //Generate the rest of the initial composition (the highest in the lexicographic order). Spill the remainder left-to-right saturating at MaxVal
v[++pos] = ( rem > MaxVal ) ? MaxVal : rem; //Saturate at MaxVal
rem -= v[pos] - MinVal; //Deduct the used up units (less the background MinValues)
}
for (unsigned int i = pos+1; i <= last; i++) //Fill with MinVal where the spillage of the remainder did not reach.
v[i] = MinVal;
if (MinVal == MaxVal){ //Special case - all elements are the same. Only the initial composition is possible.
DispVector(v);
return;
}
do
{
DispVector(v);
if (pos == last)
{
for (--pos; v[pos] == MinVal; pos--) { //Search backwards for the position of the Least Significant non-MinVal (not including the Least Significant position / the last position).
if (!pos)
return;
}
//std::cout << std::setw(pos*3 +1) << "" << "v" << std::endl; //Debug
if (v[last] >= MaxVal) // (v[last] > MaxVal) should never occur
{
if (pos == last-1) //penultimate position. //Skip the iterations that generate excessively large compositions (with elements > MaxVal).
{
for (rem = MaxVal; ((v[pos] == MinVal) || (v[pos + 1] == MaxVal)); pos--) { //Search backwards for the position of the Least Significant non-extremum (starting from the penultimate position - where the previous "for loop" has finished). THINK: Is the (v[pos] == MinVal) condition really necessary here ?
rem += v[pos]; //Accumulate the sum of the traversed elements
if (!pos)
return;
}
//std::cout << std::setw(pos * 3 + 1) << "" << "v" << std::endl; //Debug
--v[pos];
rem -= MinVal*(last - pos - 1) - 1; //Subtract the MinValues, that are assumed to always be there as a background
while (rem > MinVal) // Spill the remainder left-to-right saturating at MaxVal
{
v[++pos] = (rem > MaxVal) ? MaxVal : rem; //Saturate at MaxVal
rem -= v[pos] - MinVal; //Deduct the used up units (less the background MinValues)
}
for (unsigned int i = pos + 1; i <= last; i++) //Fill with MinVal where the spillage of the remainder did not reach.
v[i] = MinVal;
continue; //The skipping of excessively large compositions is complete. Nothing else to adjust...
}
/* (pos != last-1) */
--v[pos];
v[++pos] = MaxVal;
v[++pos] = MinVal + 1; //Propagate the change one step further. THINK: Why a CONSTANT value like MinVal+1 works here at all?
if (pos != last)
v[last] = MinVal;
}
else // (v[last] < MaxVal)
{
--v[pos++];
if (pos != last)
{
v[pos] = v[last] + 1;
v[last] = MinVal;
}
else
v[pos] += 1;
}
}
else // (pos != last)
{
--v[pos];
v[++pos] = MinVal + 1; // THINK: Why a CONSTANT value like MinVal+1 works here at all ?
}
} while (true);
}
此扩展功能的示例输出为:
GenCompositions(10,4,1,4);:
4, 4, 1, 1
4, 3, 2, 1
4, 3, 1, 2
4, 2, 3, 1
4, 2, 2, 2
4, 2, 1, 3
4, 1, 4, 1
4, 1, 3, 2
4, 1, 2, 3
4, 1, 1, 4
3, 4, 2, 1
3, 4, 1, 2
3, 3, 3, 1
3, 3, 2, 2
3, 3, 1, 3
3, 2, 4, 1
3, 2, 3, 2
3, 2, 2, 3
3, 2, 1, 4
3, 1, 4, 2
3, 1, 3, 3
3, 1, 2, 4
2, 4, 3, 1
2, 4, 2, 2
2, 4, 1, 3
2, 3, 4, 1
2, 3, 3, 2
2, 3, 2, 3
2, 3, 1, 4
2, 2, 4, 2
2, 2, 3, 3
2, 2, 2, 4
2, 1, 4, 3
2, 1, 3, 4
1, 4, 4, 1
1, 4, 3, 2
1, 4, 2, 3
1, 4, 1, 4
1, 3, 4, 2
1, 3, 3, 3
1, 3, 2, 4
1, 2, 4, 3
1, 2, 3, 4
1, 1, 4, 4
问题:我对元素最大值的限制的实现在哪里出错,导致代码的大小和复杂性增加?
IOW:算法中的缺陷在哪里,导致在添加一个简单的<= MaxVal
限制后此代码膨胀出现?是否可以简化而无需递归?
如果有人想实际编译它,则辅助功能如下:
#include <iostream>
#include <iomanip>
#include <vector>
void DispVector(const std::vector<unsigned int>& partition)
{
for (unsigned int i = 0; i < partition.size() - 1; i++) //DISPLAY THE VECTOR HERE ...or do sth else with it.
std::cout << std::setw(2) << partition[i] << ",";
std::cout << std::setw(2) << partition[partition.size() - 1] << std::endl;
}
unsigned int MaxPartitionVal(const unsigned int myInt, const unsigned int PartitionLen, unsigned int MinVal, unsigned int MaxVal)
{
if ((myInt < 2) || (PartitionLen < 2) || (PartitionLen > myInt) || (MaxVal < 1) || (MinVal > MaxVal) || (PartitionLen > myInt) || ((PartitionLen*MaxVal) < myInt ) || ((PartitionLen*MinVal) > myInt)) //Sanity checks
return 0;
unsigned int last = PartitionLen - 1;
if (MaxVal + last*MinVal > myInt)
MaxVal = myInt - last*MinVal; //It is not always possible to start with the Maximum Value. Decrease it to sth possible
return MaxVal;
}
unsigned int MinPartitionVal(const unsigned int myInt, const unsigned int PartitionLen, unsigned int MinVal, unsigned int MaxVal)
{
if ((MaxVal = MaxPartitionVal(myInt, PartitionLen, MinVal, MaxVal)) == 0) //Assume that MaxVal has precedence over MinVal
return unsigned int(-1);
unsigned int last = PartitionLen - 1;
if (MaxVal + last*MinVal > myInt)
MinVal = myInt - MaxVal - last*MinVal; //It is not always possible to start with the Minimum Value. Increase it to sth possible
return MinVal;
}
//
// Put the definition of GenCompositions() here....
//
int main(int argc, char *argv[])
{
GenCompositions(10, 4, 1, 4);
return 0;
}
注意:由这些函数生成的组合词的(上下)词典顺序不是可选的。 ...也不会跳过“ do loop”迭代,这些迭代不会生成有效的合成。
答案 0 :(得分:2)
算法
一种用于生成成分数量受限,最小值和最大值的合成的迭代算法并不那么复杂。固定长度和最小值的组合实际上使事情变得容易。我们可以随时保持每个部分的最小值,而只需移动“额外”值即可生成不同的成分。
我将使用以下示例:
n=15, length=4, min=3, max=5
我们将从创建具有最小值的合成开始:
3,3,3,3
然后将剩余值15-12 = 3分配到各个部分,从第一部分开始,每次达到最大值时向右移动:
5,4,3,3
这是第一部作品。然后,我们将使用以下规则反复转换组成,以按字典顺序获得下一个:
我们通过查找值大于最小值的最右边部分来开始每一步。 (实际上,这可以简化;请参见此答案末尾的更新代码示例。)如果这部分不是最后一部分,我们从中减去1,然后在右边的部分加1。其中,例如:
5,4,3,3
^
5,3,4,3
,这是下一个组成部分。如果最右边的非最小部分是最后一部分,则情况会稍微复杂一些。我们将最后一部分的值减小到最小,然后将“额外”值存储在临时总计中,例如:
3,4,3,5
^
3,4,3,3 + 2
然后我们进一步向左移动,直到找到下一个大于最小值的部分:
3,4,3,3 + 2
^
如果该部分右边的部分数量(2)可以容纳临时总数加1,我们从当前部分中减去1,然后将1加到临时总数上,然后分配临时总数,从当前部分右侧的部分:
3,3,3,3 + 3
^
3,3,5,4
这是我们的下一个作品。如果非最小部分右侧的部分无法容纳临时总数加1,我们将再次将该部分减小为最小值,并将“额外”值添加到临时总数中,然后进一步查找左,例如(使用另一个示例,其中n = 17):
5,3,4,5
^
5,3,4,3 + 2
^
5,3,3,3 + 3
^
4,3,3,3 + 4
^
4,5,5,3
这是我们的下一个作品。如果我们向左移动以找到一个非最小值,但没有找到第一个部分就到达了第一部分,那么我们就过去了最后一个组成部分,例如:
3,3,4,5
^
3,3,4,3 + 2
^
3,3,3,3 + 3
?
这意味着3,3,4,5
是最后的组成部分。
如您所见,这仅需要一个组合物和临时合计的空间,就可以从右到左对每个组合物进行一次迭代以查找非最小部分,并从左至右遍历该组合物以分配临时合计。它创建的所有构图都是有效的,并且顺序是相反的。
代码示例
我首先将上面解释的算法直接翻译成C ++。找到最右边的非最小部分,并通过两个辅助函数完成值的分配。该代码将逐步按照说明进行操作,但这并不是最有效的编码方法。有关改进的版本,请参见下文。
#include <iostream>
#include <iomanip>
#include <vector>
void DisplayComposition(const std::vector<unsigned int>& comp)
{
for (unsigned int i = 0; i < comp.size(); i++)
std::cout << std::setw(3) << comp[i];
std::cout << std::endl;
}
void Distribute(std::vector<unsigned int>& comp, const unsigned int part, const unsigned int max, unsigned int value) {
for (unsigned int p = part; value && p < comp.size(); ++p) {
while (comp[p] < max) {
++comp[p];
if (!--value) break;
}
}
}
int FindNonMinPart(const std::vector<unsigned int>& comp, const unsigned int part, const unsigned int min) {
for (int p = part; p >= 0; --p) {
if (comp[p] > min) return p;
}
return -1;
}
void GenerateCompositions(const unsigned n, const unsigned len, const unsigned min, const unsigned max) {
if (len < 1 || min > max || n < len * min || n > len * max) return;
std::vector<unsigned> comp(len, min);
Distribute(comp, 0, max, n - len * min);
int part = 0;
while (part >= 0) {
DisplayComposition(comp);
if ((part = FindNonMinPart(comp, len - 1, min)) == len - 1) {
unsigned int total = comp[part] - min;
comp[part] = min;
while (part && (part = FindNonMinPart(comp, part - 1, min)) >= 0) {
if ((len - 1 - part) * (max - min) > total) {
--comp[part];
Distribute(comp, part + 1, max, total + 1);
total = 0;
break;
}
else {
total += comp[part] - min;
comp[part] = min;
}
}
}
else if (part >= 0) {
--comp[part];
++comp[part + 1];
}
}
}
int main() {
GenerateCompositions(15, 4, 3, 5);
return 0;
}
改进的代码示例
实际上,大部分对FindNonMinPart
的调用都是不必要的,因为在重新分配值之后,您可以准确知道最右边的非最小部分在哪里,而无需搜索它再次。重新分配额外的值也可以简化,而无需调用函数。
下面是一个更有效的代码版本,将这些内容考虑在内。它在零件之间左右移动,搜索非最小零件,重新分配额外的价值,并在完成零件后立即输出。显然,它比第一个版本快(尽管对DisplayComposition
的调用显然占用了大多数时间)。
#include <iostream>
#include <iomanip>
#include <vector>
void DisplayComposition(const std::vector<unsigned int>& comp)
{
for (unsigned int i = 0; i < comp.size(); i++)
std::cout << std::setw(3) << comp[i];
std::cout << std::endl;
}
void GenerateCompositions(const unsigned n, const unsigned len, const unsigned min, const unsigned max) {
// check validity of input
if (len < 1 || min > max || n < len * min || n > len * max) return;
// initialize composition with minimum value
std::vector<unsigned> comp(len, min);
// begin by distributing extra value starting from left-most part
int part = 0;
unsigned int carry = n - len * min;
// if there is no extra value, we are done
if (carry == 0) {
DisplayComposition(comp);
return;
}
// move extra value around until no more non-minimum parts on the left
while (part != -1) {
// re-distribute the carried value starting at current part and go right
while (carry) {
if (comp[part] == max) ++part;
++comp[part];
--carry;
}
// the composition is now completed
DisplayComposition(comp);
// keep moving the extra value to the right if possible
// each step creates a new composition
while (part != len - 1) {
--comp[part];
++comp[++part];
DisplayComposition(comp);
}
// the right-most part is now non-minimim
// transfer its extra value to the carry value
carry = comp[part] - min;
comp[part] = min;
// go left until we have enough minimum parts to re-distribute the carry value
while (part--) {
// when a non-minimum part is encountered
if (comp[part] > min) {
// if carry value can be re-distributed, stop going left
if ((len - 1 - part) * (max - min) > carry) {
--comp[part++];
++carry;
break;
}
// transfer extra value to the carry value
carry += comp[part] - min;
comp[part] = min;
}
}
}
}
int main() {
GenerateCompositions(15, 4, 3, 5);
return 0;
}
答案 1 :(得分:1)
使用深度优先搜索和递归算法可以非常轻松地实现此算法。因为不能使用递归,所以可以使用堆栈来模拟函数调用。
这是一种可能的解决方案:
void GenCompositions(
unsigned int value,
const unsigned int CompositionLen,
const unsigned int min,
const unsigned int max
) {
using composition_t = std::vector<int>;
using stackframe = std::pair<composition_t::iterator, unsigned int>;
// Create a vector with size CompositionLen and fill it with the
// minimum allowed value
composition_t composition(CompositionLen, min);
// Because we may have initialised our composition with non-zero values,
// we need to decrease the remaining value
value -= min*CompositionLen;
// Iterator to where we intend to manipulate our composition
auto pos = composition.begin();
// We need the callstack to implement the depth first search in an
// iterative manner without searching through the composition on
// every backtrace.
std::vector<stackframe> callstack;
// We know, that the composition has a maximum length and so does our
// callstack. By reserving the memory upfront, we never need to
// reallocate the callstack when pushing new elements.
callstack.reserve(CompositionLen);
// Our main loop
do {
// We need to generate a valid composition. To do this, we fill the
// remaining places of the composition with the maximum allowed
// values, until the remaining value reaches zero
for(
;
// Check if we hit the end or the total sum equals the value
pos != composition.end() && value > 0;
++pos
) {
// Whenever we edit the composition, we add a frame to our
// callstack to be able to revert the changes when backtracking
callstack.emplace_back(pos, value);
// calculate the maximum allowed increment to add to the current
// position in our composition
const auto diff = std::min(value,max-*pos);
// *pos might have changed in a previous run, therefore we can
// not use diff as an offset. Instead we have to assign
// the correct value.
*pos = min+diff;
// We changed our composition, so we have to change the
// remaining value as well
value -= diff;
}
// If the remaining value is zero we got a correct composition and
// display it to std::out
if(value == 0) {
DisplayVector(
composition,
std::distance(composition.begin(), pos),
min
);
}
// This is our backtracking step. To prevent values below the
// minimum in our composition we backtrack until we get a value that
// is higher than the minimum. That way we can decrease this value
// in the last step by one. Because our for loop that generates the
// valid composition increases pos once more before exit, we have to
// look at (pos-1).
while(*(pos-1) <= min) {
// If our callstack is empty, we can not backtrack further and
// terminate the algorithm
if(callstack.empty()) {
return;
}
// If backtracking is possible, we get tha last values from the
// callstack and reset our state
pos = callstack.back().first;
value = callstack.back().second;
// After this is done, we remove the last frame from the stack
callstack.pop_back();
}
// The last step is to decrease the value in the composition and
// increase the remaining value to generate the next composition
--*(pos-1);
++value;
} while(true);
}
我还更改了DisplayVector
的接口,这是一个可能的实现:
// Because we stop stepping deeper in our DFS tree, if the remaining value
// is zero, the composition may have wrong values behind pos. This is no
// problem for us, because we know these values have to be the minimum
// allowed value.
void DisplayVector(const std::vector<int>& vector, size_t pos, int minval) {
// I prefere to print opening an closing brackets around sequences
std::cout << "{ ";
// The ostream_iterator is a addition, that comes with C++17.
std::ostream_iterator<int> out_it (std::cout, " ");
// If you can't use C++17, you can use a for loop with an index
// from 0 to pos to print from the composition
std::copy_n(vector.begin(), pos, out_it);
// And a for loop to print vector.size() - pos times the value of minval
// to fill the rest of your composition
std::fill_n(out_it, vector.size() - pos, minval);
std::cout << "}\n";
}
要编译此代码,您需要将标准设置为C ++ 17并包括以下标头:
#include <iostream>
#include <vector>
#include <iterator>
GenCompositions()
不使用C ++ 17功能,因此,如果您不能使用现代编译器,则可以重新实现打印功能并继续使用。