我正在为数据集中的所有数字变量创建Benford图。 homepage
运行单个变量
#install.packages("benford.analysis")
library(benford.analysis)
plot(benford(iris$Sepal.Length))
看起来很棒。传说中写着“数据集:iris $ Sepal.Length”,太完美了!。
https://en.wikipedia.org/wiki/Benford%27s_law
使用apply
运行4个变量,
apply(iris[1:4], 2, function(x) plot(benford(x)))
创建四个图,但是,每个图的图例显示为“数据集:x”
我尝试使用for循环,
for (i in colnames(iris[1:4])){
plot(benford(iris[[i]]))
}
这将创建四个图,但是现在图例显示为“数据集:iris [[i]]”。我想要每个图表上的变量名。
我尝试了一个不同的循环,希望获得带有经过评估的解析字符串(例如“ iris $ Sepal.Length”)的标题:
for (i in colnames(iris[1:4])){
plot(benford(eval(parse(text=paste0("iris$", i)))))
}
但是现在图例显示“数据集:eval(parse(text = paste0(“ iris $”,i)))”。
AND ,现在我遇到了臭名昭著的eval(parse(text=paste0(
(例如:和How to "eval" results returned by "paste0"?)
我想要诸如“数据集:iris $ Sepal.Length”或“数据集:Sepal.Length”之类的标签。如何在图例中使用有意义的变量名创建多个图?
答案 0 :(得分:1)
之所以发生这种情况,是因为benford
函数=中的第一行:
benford <- function(data, number.of.digits = 2, sign = "positive", discrete=TRUE, round=3){
data.name <- as.character(deparse(substitute(data)))
来源:https://github.com/cran/benford.analysis/blob/master/R/functions-new.R
然后使用 data.name
来命名您的图形。不幸的是,无论传递给函数的变量名或表达式如何,都将被deparse(substitute())
调用捕获,并将其用作图形的名称。
一种短期解决方案是复制并重写该函数:
#install.packages("benford.analysis")
library(benford.analysis)
#install.packages("data.table")
library(data.table) # needed for function
# load hidden functions into namespace - needed for function
r <- unclass(lsf.str(envir = asNamespace("benford.analysis"), all = T))
for(name in r) eval(parse(text=paste0(name, '<-benford.analysis:::', name)))
benford_rev <- function{} # see below
for (i in colnames(iris[1:4])){
plot(benford_rev(iris[[i]], data.name = i))
}
这具有以下负面影响:
所以希望有人可以提出更好的方法!
benford_rev <- function(data, number.of.digits = 2, sign = "positive", discrete=TRUE, round=3, data.name = as.character(deparse(substitute(data)))){ # changed
# removed line
benford.digits <- generate.benford.digits(number.of.digits)
benford.dist <- generate.benford.distribution(benford.digits)
empirical.distribution <- generate.empirical.distribution(data, number.of.digits,sign, second.order = FALSE, benford.digits)
n <- length(empirical.distribution$data)
second.order <- generate.empirical.distribution(data, number.of.digits,sign, second.order = TRUE, benford.digits, discrete = discrete, round = round)
n.second.order <- length(second.order$data)
benford.dist.freq <- benford.dist*n
## calculating useful summaries and differences
difference <- empirical.distribution$dist.freq - benford.dist.freq
squared.diff <- ((empirical.distribution$dist.freq - benford.dist.freq)^2)/benford.dist.freq
absolute.diff <- abs(empirical.distribution$dist.freq - benford.dist.freq)
### chi-squared test
chisq.bfd <- chisq.test.bfd(squared.diff, data.name)
### MAD
mean.abs.dev <- sum(abs(empirical.distribution$dist - benford.dist)/(length(benford.dist)))
if (number.of.digits > 3) {
MAD.conformity <- NA
} else {
digits.used <- c("First Digit", "First-Two Digits", "First-Three Digits")[number.of.digits]
MAD.conformity <- MAD.conformity(MAD = mean.abs.dev, digits.used)$conformity
}
### Summation
summation <- generate.summation(benford.digits,empirical.distribution$data, empirical.distribution$data.digits)
abs.excess.summation <- abs(summation - mean(summation))
### Mantissa
mantissa <- extract.mantissa(empirical.distribution$data)
mean.mantissa <- mean(mantissa)
var.mantissa <- var(mantissa)
ek.mantissa <- excess.kurtosis(mantissa)
sk.mantissa <- skewness(mantissa)
### Mantissa Arc Test
mat.bfd <- mantissa.arc.test(mantissa, data.name)
### Distortion Factor
distortion.factor <- DF(empirical.distribution$data)
## recovering the lines of the numbers
if (sign == "positive") lines <- which(data > 0 & !is.na(data))
if (sign == "negative") lines <- which(data < 0 & !is.na(data))
if (sign == "both") lines <- which(data != 0 & !is.na(data))
#lines <- which(data %in% empirical.distribution$data)
## output
output <- list(info = list(data.name = data.name,
n = n,
n.second.order = n.second.order,
number.of.digits = number.of.digits),
data = data.table(lines.used = lines,
data.used = empirical.distribution$data,
data.mantissa = mantissa,
data.digits = empirical.distribution$data.digits),
s.o.data = data.table(second.order = second.order$data,
data.second.order.digits = second.order$data.digits),
bfd = data.table(digits = benford.digits,
data.dist = empirical.distribution$dist,
data.second.order.dist = second.order$dist,
benford.dist = benford.dist,
data.second.order.dist.freq = second.order$dist.freq,
data.dist.freq = empirical.distribution$dist.freq,
benford.dist.freq = benford.dist.freq,
benford.so.dist.freq = benford.dist*n.second.order,
data.summation = summation,
abs.excess.summation = abs.excess.summation,
difference = difference,
squared.diff = squared.diff,
absolute.diff = absolute.diff),
mantissa = data.table(statistic = c("Mean Mantissa",
"Var Mantissa",
"Ex. Kurtosis Mantissa",
"Skewness Mantissa"),
values = c(mean.mantissa = mean.mantissa,
var.mantissa = var.mantissa,
ek.mantissa = ek.mantissa,
sk.mantissa = sk.mantissa)),
MAD = mean.abs.dev,
MAD.conformity = MAD.conformity,
distortion.factor = distortion.factor,
stats = list(chisq = chisq.bfd,
mantissa.arc.test = mat.bfd)
)
class(output) <- "Benford"
return(output)
}
答案 1 :(得分:1)
我刚刚更新了软件包(GitHub version),以允许使用用户提供的名称。
现在,该函数有一个名为data.name
的新参数,您可以在其中提供一个带有数据名称的字符向量,并覆盖默认值。因此,对于您的示例,您只需运行以下代码即可。
首先安装GitHub版本(我将很快将该版本提交给CRAN)。
devtools::install_github("carloscinelli/benford.analysis") # install new version
现在,您可以在for循环中提供数据的名称:
library(benford.analysis)
for (i in colnames(iris[1:4])){
plot(benford(iris[[i]], data.name = i))
}
所有图将按照您的意愿正确命名(如下)。
由reprex package(v0.2.1)于2019-08-10创建