我编写了一个python函数来接收数据帧的一列,检查数据类型,以及是否对所需的数据类型进行了错误的更改。但是,更改仅在函数内发生。如何解决此问题以对数据框进行永久更改?
def change_required_data_type (column,data_type):
is_correct = None
for i in column:
if type(i) != data_type:
is_correct = False
if is_correct != False:
print('True')
elif is_correct == False:
column = column.astype(data_type)
print('False')
答案 0 :(得分:1)
对于仅在函数内部起作用而不在外部起作用的问题,您需要在函数的末尾添加返回某些对象。
def myfunc(column, data_type):
# ...
elif is_correct == False:
column = column.astype(data_type)
print('False')
# You've modified the column variable inside the function,
# so your function needs to return it to outside the function.
return column
# Call your function from outside.
result = myfunc(column, data_type)
# Use inputs for column and data_type when calling your function.
print(result)
但是,如果使用的是Pandas库,则应使用常规方法来更改列的数据类型。参见https://cmdlinetips.com/2018/09/how-to-change-data-type-for-one-or-more-columns-in-pandas-dataframe/
通常,您要使用df.astype(str)
来更改Pandas数据框中一列或多列的数据类型。数据框的单列也称为系列。
df['Column1'] = df['Column1'].astype('str')
df.Day = df.Day.astype('int64')
还有更多在Pandas DataFrame对象中更改数据类型的示例。
import pandas as pd
mydic = {
"name": ['Alice', 'Tommy', 'Jane'],
"age": [9, 21, 22],
"height": [3.6, 6.1, 5.5],
}
df = pd.DataFrame(data = mydic)
print(df)
print(df.dtypes)
# First change age from integer to floating point.
df.age = df.age.astype('float64')
print(df.age) # Notice the decimal format 9.0.
print(df.dtypes) # age is now floating point.
# Next change height from floating point to integer.
df.height = df.height.astype('int32')
print(df.height) # Notice height is truncated, no more decimal point.
# Next change age to string (object type).
df.age = df.age.astype('str')
print(df.dtypes)
print(df)
# Change height from integer to float, using Bracket Notation.
df['height'] = df['height'].astype('float32')
print(df.dtypes)
# Notice height is a decimal format, 3.0.
# But the original fractional data of .6 was lost (was 3.6).
df.astype('str')
的默认用法是返回COPY,而不替换原始数据帧。因为您已经使用df.name = ...
将更改分配给了原始系列,所以您更改了“就地”类型。