基本上pygame.surfarray.pixels3d
返回一个(672,672,3)
形状的数组,该数组给出以下错误:资源已耗尽
,但是当我传递(6,30,30)
数组时它起作用。
任何帮助将不胜感激。
import numpy
import random
from DeepRTS import PyDeepRTS
from Algorithms.DQN2.DQN import DQN
# Start the game
g = PyDeepRTS('21x21-2v2.json')
# Add players
player1 = g.add_player()
player2 = g.add_player()
#player3 = g.add_player()
#player4 = g.add_player()
# Set FPS and UPS limits
g.set_max_fps(10000000)
g.set_max_ups(10000000)
# How often the state should be drawn
g.render_every(20)
# How often the capture function should return a state
g.capture_every(20)
# How often the game image should be drawn to the screen
g.view_every(20)
# Start the game (flag)
g.start()
actions = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15, 16]
observation = numpy.ndarray(shape=(6,30,30), dtype=float)
flag = 0
player1.do_action(13)
player2.do_action(13)
player1.get_Score()
while flag == 0:
g.tick() # Update the game clock
g.update() # Process the game state
g.render() # Draw the game state to graphics
state2 = g.capture()
if state2 is not None:
dqn = DQN(state2, len(actions))
flag=1
# Run forever
i=0
while True:
g.tick() # Update the game clock
g.update() # Process the game state
g.render() # Draw the game state to graphics
state2 = g.capture() # Captures current state (Returns None if .capture_every is set for some iterations)
g.caption() # Show Window caption
g.view() # View the game state in the pygame window
if state2 is not None and flag == 1:
actionID = dqn.act()
# If the game is in terminal state
terminal = g.is_terminal()
reward_ = player1.get_Score()
player1.do_action(actionID)
player2.do_action(numpy.random.randint(0,19))
dqn.train(actionID, reward_, terminal,state2)
if g.is_terminal():
print("finished")
g.reset()
print(actionID, " Reward",reward_)
i += 1
#This is the DQN algorithm
import os
import random
import numpy as np
import tensorflow as tf
from collections import deque
from skimage.color import rgb2gray
from skimage.transform import resize
from keras.models import Sequential
from keras.layers import Conv2D, Flatten, Dense
from keras import backend as K
K.set_image_dim_ordering('th')
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
class DQN:
def __init__(self,
initial_state,
num_actions,
initial_epsilon=1.0,
final_epsilon=0.1,
exploration_steps=10000,
initial_replay_size=10,
memory_size=400000,
batch_size=9, # 32
learning_rate=0.0025,
momentum=0.95,
min_grad=0.01,
env_name="DeepRTS",
save_network_path = "dqn2/saved_networks/",
save_summary_path = "dqn2/summary/",
load_network = False,
gamma=0.99,
train_interval = 40,
target_update_interval = 1000,
save_interval = 30000
):
self.state = initial_state
self.sshape = initial_state.shape # Shape of the state
self.num_actions = num_actions # Action space
self.epsilon = initial_epsilon # Epsilon-greedy start
self.final_epsilon = final_epsilon # Epsilon-greedy end
self.epsilon_step = (self.epsilon - self.final_epsilon) / exploration_steps # Epsilon decrease step
self.initial_replay_size = initial_replay_size
self.memory_size = memory_size
self.exploration_steps = exploration_steps
self.learning_rate = learning_rate
self.momentum = momentum
self.min_grad = min_grad
self.batch_size = batch_size
self.gamma = gamma
self.target_update_interval = target_update_interval
self.save_interval = save_interval
self.env_name = env_name
self.save_network_path = save_network_path + self.env_name
self.save_summary_path = save_summary_path + self.env_name
self.load_network = load_network
self.train_interval = train_interval
self.t = 0 # TODO
# Summary Parameters
self.total_reward = 0
self.total_q_max = 0
self.total_loss = 0
self.duration = 0
self.episode = 0
# Replay Memory
self.replay_memory = deque()
# Create Q Network
self.s, self.q_values, q_network = self.build_model()
q_network_weights = q_network.trainable_weights
# Create target network
self.st, self.target_q_values, target_network = self.build_model()
target_network_weights = target_network.trainable_weights
# Define target network update operation
self.update_target_network = [target_network_weights[i].assign(q_network_weights[i]) for i in range(len(target_network_weights))]
# Define loss and gradient update operation
self.a, self.y, self.loss, self.grads_update = self.build_functions(q_network_weights)
self.sess = tf.InteractiveSession()
self.saver = tf.train.Saver(q_network_weights)
self.summary_placeholders, self.update_ops, self.summary_op = self.setup_summary()
self.summary_writer = tf.summary.FileWriter(self.save_summary_path, self.sess.graph)
if not os.path.exists(self.save_network_path):
os.makedirs(self.save_network_path)
self.sess.run(tf.global_variables_initializer())
# Load network
self.load()
# Initialize target network
self.sess.run(self.update_target_network)
def build_model(self):
model = Sequential()
model.add(Conv2D(32, (1, 1), strides=(1, 1), activation='relu', input_shape=self.sshape))
model.add(Conv2D(64, (1, 1), activation="relu", strides=(1, 1)))
model.add(Conv2D(64, (1, 1), activation="relu", strides=(1, 1)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(self.num_actions))
s = tf.placeholder(tf.float32, [None, *self.sshape])
q_values = model(s)
return s, q_values, model
def build_functions(self, q_network_weights):
a = tf.placeholder(tf.int64, [None])
y = tf.placeholder(tf.float32, [None])
# Convert action to one hot vector
a_one_hot = tf.one_hot(a, self.num_actions, 1.0, 0.0)
q_value = tf.reduce_sum(tf.multiply(self.q_values, a_one_hot), reduction_indices=1)
# Clip the error, the loss is quadratic when the error is in (-1, 1), and linear outside of that region
error = tf.abs(y - q_value)
quadratic_part = tf.clip_by_value(error, 0.0, 1.0)
linear_part = error - quadratic_part
loss = tf.reduce_mean(0.5 * tf.square(quadratic_part) + linear_part)
optimizer = tf.train.RMSPropOptimizer(self.learning_rate, momentum=self.momentum, epsilon=self.min_grad)
grads_update = optimizer.minimize(loss, var_list=q_network_weights)
return a, y, loss, grads_update
def new_episode(self):
pass
def end_episode(self):
pass
def act(self):
if self.epsilon >= random.random() or self.t < self.initial_replay_size:
action = random.randrange(self.num_actions)
else:
action = np.argmax(self.q_values.eval(feed_dict={self.s: [np.float32(self.state)]}))
# Anneal epsilon linearly over time
if self.epsilon > self.final_epsilon and self.t >= self.initial_replay_size:
self.epsilon -= self.epsilon_step
return action
def train_network(self):
state_batch = []
action_batch = []
reward_batch = []
next_state_batch = []
terminal_batch = []
y_batch = []
# Sample random minibatch of transition from replay memory
minibatch = random.sample(self.replay_memory, self.batch_size)
for data in minibatch:
state_batch.append(data[0])
action_batch.append(data[1])
reward_batch.append(data[2])
next_state_batch.append(data[3])
terminal_batch.append(data[4])
# Convert True to 1, False to 0
terminal_batch = np.array(terminal_batch) + 0
target_q_values_batch = self.target_q_values.eval(feed_dict={self.st: np.float32(np.array(next_state_batch))})
y_batch = reward_batch + (1 - terminal_batch) * self.gamma * np.max(target_q_values_batch, axis=1)
loss, _ = self.sess.run([self.loss, self.grads_update], feed_dict={
self.s: np.float32(np.array(state_batch)),
self.a: action_batch,
self.y: y_batch
})
self.total_loss += loss
def train(self, action, reward, terminal, observation):
"""
# action - The performed action which led to this state
# reward - The reward given in the state transition
# terminal - Is state terminal? (Loss / Victory)
# observation - New state observation after action
"""
next_state = np.append(self.state[1:, :, :], observation, axis=0)
# Clip all positive rewards at 1 and all negative rewards at -1, leaving 0 rewards unchanged
reward = np.clip(reward, -1, 1)
# Store transition in replay memory
self.replay_memory.append((self.state, action, reward, self.state, terminal))
if len(self.replay_memory) > self.memory_size:
self.replay_memory.popleft()
if self.t >= self.initial_replay_size:
# Train network
if self.t % self.train_interval == 0:
self.train_network()
# Update target network
if self.t % self.target_update_interval == 0:
self.sess.run(self.update_target_network)
# Save network
if self.t % self.save_interval == 0:
save_path = self.saver.save(self.sess, self.save_network_path + '/' + self.env_name, global_step=self.t)
print('Successfully saved: ' + save_path)
self.total_reward += reward
self.total_q_max += np.max(self.q_values.eval(feed_dict={self.s: [np.float32(self.state)]}))
self.duration += 1
if terminal:
# Write summary
if self.t >= self.initial_replay_size:
stats = [self.total_reward, self.total_q_max / float(self.duration),self.duration, self.total_loss / (float(self.duration) / float(self.train_interval))]
for i in range(len(stats)):
self.sess.run(self.update_ops[i], feed_dict={self.summary_placeholders[i]: float(stats[i])})
summary_str = self.sess.run(self.summary_op)
self.summary_writer.add_summary(summary_str, self.episode + 1)
# Debug
if self.t < self.initial_replay_size:
mode = 'random'
elif self.initial_replay_size <= self.t < self.initial_replay_size + self.exploration_steps:
mode = 'explore'
else:
mode = 'exploit'
print('EPISODE: {0:6d} / TIMESTEP: {1:8d} / DURATION: {2:5d} / EPSILON: {3:.5f} / TOTAL_REWARD: {4:3.0f} / AVG_MAX_Q: {5:2.4f} / AVG_LOSS: {6:.5f} / MODE: {7}'.format(self.episode + 1, self.t, self.duration, self.epsilon,self.total_reward, self.total_q_max / float(self.duration),self.total_loss / (float(self.duration) / float(self.train_interval)), mode))
self.total_reward = 0
self.total_q_max = 0
self.total_loss = 0
self.duration = 0
self.episode += 1
self.t += 1
def iterate(self):
pass
def load(self):
checkpoint = tf.train.get_checkpoint_state(self.save_network_path)
if self.load_network and checkpoint and checkpoint.model_checkpoint_path:
self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
print('Successfully loaded: ' + checkpoint.model_checkpoint_path)
else:
print('Training new network...')
def setup_summary(self):
episode_total_reward = tf.Variable(0.)
tf.summary.scalar(self.env_name + '/Total Reward/Episode', episode_total_reward)
episode_avg_max_q = tf.Variable(0.)
tf.summary.scalar(self.env_name + '/Average Max Q/Episode', episode_avg_max_q)
episode_duration = tf.Variable(0.)
tf.summary.scalar(self.env_name + '/Duration/Episode', episode_duration)
episode_avg_loss = tf.Variable(0.)
tf.summary.scalar(self.env_name + '/Average Loss/Episode', episode_avg_loss)
summary_vars = [episode_total_reward, episode_avg_max_q, episode_duration, episode_avg_loss]
summary_placeholders = [tf.placeholder(tf.float32) for _ in range(len(summary_vars))]
update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))]
summary_op = tf.summary.merge_all()
return summary_placeholders, update_ops, summary_op
错误:
2019-07-07 02:58:55.652029:W tensorflow / core / common_runtime / bfc_allocator.cc:319] *********************** ****************************************************** ****** ____________________ * 2019-07-07 02:58:55.652085:W tensorflow / core / framework / op_kernel.cc:1502] OP_REQUIRES在assign_op.h:117失败:资源耗尽:分配形状为[409600,512]的张量并键入float的OOM在/ job:localhost / replica:0 / task:0 / device:GPU:0上通过分配器GPU_0_bfc 追溯(最近一次通话):
答案 0 :(得分:0)
使用Out Of Memory (OOM)
时,如果导致CNNs
错误,我们可以尝试以下提到的步骤:
Mini-Batch
的大小。32 bit Floats
替换为16 bit Floats
(如果值适合该范围)Dimensionality/Shape
,从而减少参数的数量,从而减少了RAM消耗。