我将简短简短地介绍一下,我正在尝试使用tensorflow进行外汇学习,每当我运行从youtube教程中获得的代码时,我都会得到0输出。它只是再说一次。有人可以帮我吗?我下面有代码。
我尝试过更改变量,简化代码,一切。
import tensorflow as tf
import numpy
import pandas as pd
import matplotlib.pyplot as plt
rng = numpy.random
data = pd.read_csv("/Users/adamh/OneDrive/Desktop/data.csv")
server_time = data['server_time'].values
bid = data['bid'].values
ask = data['ask'].values
#hyperparameters
learning_rate = 0.01
training_epochs = 10000
#parameter
display_step = 50
train_X = numpy.asarray(server_time)
train_Y = numpy.asarray(ask)
n_samples = train_X.shape[0]
X = tf.placeholder('float32')
Y = tf.placeholder('float32')
W = tf.Variable(rng.randn(),name = "Weight")
b = tf.Variable(rng.randn(), name = 'bias')
pred = tf.add(tf.multiply(X,W),b)
error = tf.reduce_sum(tf.pow(pred-(Y+Y2),2))/(2*n_samples)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(error)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
# Run the initializer
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(error, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "error=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_error = sess.run(error, feed_dict={X: train_X, Y: train_Y})
print("Training error=", training_error, "W=", sess.run(W), "b=", sess.run(b), '\n')
# Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
# Testing example, as requested (Issue #2)
test_X = numpy.asarray([2,4,6,8,10])
test_Y = numpy.asarray([25,23,21,19,17])
print("Testing... (Mean square loss Comparison)")
testing_error = sess.run(
tf.reduce_sum(tf.pow(pred - (Y), 2)) / (2 * test_X.shape[0]),
feed_dict={X: test_X, Y: test_Y}) # same function as cost above
print("Testing error=", testing_error)
print("Absolute mean square loss difference:", abs(
training_error - testing_error))
plt.plot(test_X, test_Y, 'bo', label='Testing data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
没有给出输出。