我在项目中使用了此代码,但我想计算或绘制每个类的错误。我有6个类。我该怎么办?
def plot_history(net_history):
history = network_history.history
losses = history['loss']
accuracies = history['acc']
plt.xlabel('Epochs')
plt.ylabel('loss')
plt.plot(losses)
plt.figure()
plt.xlabel('Epochs')
plt.ylabel('accuracy')
plt.plot(accuracies)
myinput = layers.Input(shape=(100,200))
conv1 = layers.Conv1D(16, 3, activation='relu', padding='same', strides=2)(myinput)
conv2 = layers.Conv1D(32, 3, activation='relu', padding='same', strides=2)(conv1)
flat = layers.Flatten()(conv2)
out_layer = layers.Dense(6, activation='softmax')(flat)
mymodel = Model(myinput, out_layer)
mymodel.summary()
mymodel.compile(optimizer=keras.optimizers.Adam(),
loss=keras.losses.categorical_crossentropy, metrics=['accuracy'])
network_history = mymodel.fit(X_train, Y_train, batch_size=128,epochs=5, validation_split=0.2)
plot_history(network_history)
test_loss, test_acc = mymodel.evaluate(X_test, Y_test)
test_labels_p = mymodel.predict(X_test)
答案 0 :(得分:0)
评估分类器的一种简单方法是scikit-learn中的classification_report
:
from sklearn.metrics import classification_report
....
# Actual predictions here, not just probabilities
pred = numpy.round(mymodel.predict(X_test))
print(classification_report(Y_test, pred))
其中Y_test
是一键向量的列表。
这将向您显示每个班级的精度,召回率和f1度量。缺点是它仅考虑预测是正确还是错误,并且没有考虑模型的确定性。
答案 1 :(得分:0)
您必须像二进制分类问题一样训练它,然后您可以使用此代码为不同的类制作学习曲线:
plt.plot(network_history.history['loss'])
plt.plot(network_history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()