在更换服务器并尝试增加一些数据库密集型任务的工作线程数之后,我发现应用程序出现性能问题。
经过一些测试,我发现问题出在从dataReader读取数据。在30个线程上执行简单查询至少比在单线程上慢15倍。使用PerfView,我发现大部分时间都浪费在BLOCKED_TIME上。
对于测试,我将Ryzen Threadripper(32cores / 64threads)与SqlServer的本地实例一起使用。在具有相似规格的生产服务器上,结果相同。
我尝试运行30个应用程序实例-2-3和30个实例之间的性能几乎没有差异,因此服务器性能足以承载30个并行查询。
我尝试了一些连接字符串的更改,例如增加/减少最小/最大池大小,禁用池,将LCP更改为TCP-无结果。
?
有什么方法可以提高性能,并使我的应用程序具有线程数可扩展性?
编辑。 db结构和示例查询以重现:
class Program
{
static void Main(string[] args)
{
var ids = new List<Guid>() { ... }; //filled by database ids
var stats = new ConcurrentBag<long>();
//warmup
stats.Add(TestMethod());
Console.WriteLine(String.Format("|{0}|{1,5}ms|", "warmup", stats.Average()));
//start 1 to 30 threads (test on server with 32 cores / 64 threads)
for (int i = 1; i <= 30; i++)
{
stats = new ConcurrentBag<long>();
var tasks = Enumerable.Range(0, i).Select(idx =>
{
var id = ids[idx]; // separate ids to be sure we're not reading same records from disk
return Task.Run(() =>
{
for (int j = 0; j < 20; j++)
{
stats.Add(TestMethod(id));
}
});
}).ToArray();
Task.WaitAll(tasks);
Console.WriteLine(String.Format("|{0,2}|{1,5}ms|", i, (int)stats.Average()));
}
Console.WriteLine("End");
Console.ReadLine();
}
private static long TestMethod()
{
var records = new List<object[]>();
var sw = new Stopwatch();
using (var connection = new SqlConnection(ConnectionString))
{
connection.Open();
using (var transaction = connection.BeginTransaction())
using (var command = connection.CreateCommand())
{
command.Transaction = transaction;
command.CommandText = SqlQuery;
command.Parameters.Add(new SqlParameter("id", id));
// measure only dataReader time
sw.Start();
using (var dataReader = command.ExecuteReader())
{
// got ~2000 rows from query
while (dataReader.Read())
{
//read all data from row, test on Guid
var values = new object[6];
dataReader.GetValues(values);
records.Add(values);
}
}
sw.Stop();
}
}
return sw.ElapsedMilliseconds;
}
/****** Object: Table [dbo].[Table_1] Script Date: 05.07.2019 14:08:15 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[Table_1](
[Id] [uniqueidentifier] NOT NULL,
[Ref1] [uniqueidentifier] NULL,
[Field1] [uniqueidentifier] NULL,
[Field2] [uniqueidentifier] NULL,
CONSTRAINT [PK_Table_1] PRIMARY KEY CLUSTERED
(
[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF) ON [PRIMARY]
) ON [PRIMARY]
GO
/****** Object: Table [dbo].[Table_2] Script Date: 05.07.2019 14:08:15 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[Table_2](
[Id] [uniqueidentifier] NOT NULL,
[Field1] [uniqueidentifier] NULL,
CONSTRAINT [PK_Table_2] PRIMARY KEY CLUSTERED
(
[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF) ON [PRIMARY]
) ON [PRIMARY]
GO
/****** Object: Index [IDX_Table_1_Ref1] Script Date: 05.07.2019 14:08:15 ******/
CREATE NONCLUSTERED INDEX [IDX_Table_1_Ref1] ON [dbo].[Table_1]
(
[Ref1] ASC
)
INCLUDE ( [Field1],
[Field2]) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF) ON [PRIMARY]
GO
ALTER TABLE [dbo].[Table_1] WITH CHECK ADD CONSTRAINT [FK_Table_1_Table_2] FOREIGN KEY([Ref1])
REFERENCES [dbo].[Table_2] ([Id])
GO
ALTER TABLE [dbo].[Table_1] CHECK CONSTRAINT [FK_Table_1_Table_2]
GO
现在id在T1中有30个记录,而在T1中有2000 * 30个记录,因此每个线程在具有30个记录的同一数据集上工作。数据填充有随机的newid()。
edit2。
在情况下,我还比较了该解决方案-30个独立进程与1个进程以及Sql Server上的30个线程。 30个单独的进程可以正常工作-大约相当于原始执行时间的150%,而不是1500%。 差异最大-在30个独立进程和单线程的情况下,我获得了约14个等待任务和每秒20k个批处理请求,在单进程和30个线程中,我获得了30个以上的等待任务(主要在网络I / O上)和2k个批处理请求/秒。
设置
select
t2.id as Id,
t2.Field1 as Field1,
t1.Id as T1_Id,
t1.Ref1 as T1_T2,
t1.Field1 as T1_Field1,
t1.Field2 as T1_Field2
from dbo.Table_2 t2
join dbo.Table_1 t1 on t1.Ref1 = t2.Id
where t2.id = @id
解决了我的问题,现在它可以扩展到服务器上的最大可用线程。感谢您的帮助!
答案 0 :(得分:0)
检查您的GC设置。
https://www.dotnetcurry.com/csharp/1471/garbage-collection-csharp-dotnet-core
设置参数
ServerGarbageCollection = true
ConcurrentGarbageCollection = false
可能会有所帮助。 :)