我有26个节点的干净数据集。我使用tidygraph将这26个节点放置在无向网络图中,在这里我使用centrality_degree()
函数来计算中心度。但是,当我绘制结果网络的图形时,我可能的最高中心度是40,这应该是不可能的。当我将图形更改为有向图时,将对此进行纠正。
我有点困惑,就像我过去使用的其他方法(我手动计算中心度)一样,我从来没有遇到过这个问题。
这是正常的行为,还是我做错了什么?
可复制的示例:
library(tidygraph)
library(ggraph)
library(tidyverse)
nodes <- structure(list(id = 1:26, label = c("a", "b", "c", "d", "e",
"f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r",
"s", "t", "u", "v", "w", "x", "y", "z")), row.names = c(NA, -26L
), class = "data.frame")
edges <- structure(list(from = c(21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 25L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 17L, 17L, 17L, 17L, 17L),
to = c(1L, 12L, 3L, 16L, 24L, 4L, 10L, 6L, 22L, 2L, 8L, 1L,
12L, 13L, 3L, 18L, 16L, 24L, 5L, 7L, 14L, 4L, 10L, 6L, 9L,
22L, 15L, 2L, 20L, 8L, 21L, 12L, 13L, 3L, 16L, 24L, 5L, 7L,
14L, 4L, 10L, 6L, 22L, 15L, 2L, 8L, 17L, 21L, 1L, 13L, 3L,
16L, 5L, 7L, 14L, 10L, 6L, 9L, 22L, 15L, 2L, 20L, 8L, 17L,
21L, 1L, 3L, 18L, 16L, 5L, 7L, 14L, 4L, 10L, 6L, 25L, 9L,
22L, 15L, 20L, 8L, 17L, 21L, 11L, 1L, 12L, 13L, 18L, 16L,
24L, 5L, 7L, 14L, 4L, 10L, 6L, 25L, 9L, 22L, 15L, 20L, 8L,
17L, 1L, 3L, 10L, 6L, 22L, 20L, 8L, 21L, 11L, 1L, 13L, 3L,
18L, 24L, 7L, 4L, 10L, 6L, 25L, 9L, 22L, 15L, 2L, 20L, 8L,
17L, 21L, 11L, 1L, 12L, 13L, 18L, 16L, 5L, 7L, 14L, 10L,
6L, 25L, 9L, 22L, 15L, 20L, 8L, 17L, 1L, 3L, 18L, 16L, 7L,
14L, 4L, 10L, 6L, 9L, 22L, 15L, 2L, 20L, 8L, 17L, 21L, 11L,
1L, 12L, 13L, 3L, 18L, 16L, 24L, 14L, 4L, 10L, 6L, 25L, 9L,
22L, 15L, 2L, 20L, 8L, 11L, 1L, 3L, 18L, 16L, 7L, 10L, 6L,
9L, 22L, 15L, 2L, 20L, 8L, 17L, 21L, 11L, 1L, 12L, 13L, 3L,
18L, 16L, 24L, 5L, 7L, 14L, 10L, 6L, 25L, 9L, 22L, 15L, 2L,
20L, 8L, 17L, 21L, 11L, 1L, 12L, 13L, 3L, 18L, 16L, 24L,
5L, 7L, 14L, 4L, 6L, 25L, 9L, 22L, 15L, 2L, 20L, 8L, 17L,
21L, 11L, 1L, 12L, 13L, 3L, 18L, 24L, 5L, 7L, 14L, 4L, 10L,
25L, 9L, 22L, 15L, 2L, 20L, 8L, 21L, 1L, 13L, 3L, 18L, 5L,
10L, 6L, 22L, 2L, 20L, 8L, 21L, 1L, 13L, 3L, 18L, 16L, 24L,
4L, 10L, 6L, 22L, 15L, 2L, 20L, 8L, 11L, 1L, 12L, 13L, 3L,
16L, 24L, 5L, 7L, 14L, 4L, 10L, 6L, 25L, 9L, 15L, 2L, 20L,
8L, 17L, 21L, 1L, 12L, 3L, 18L, 16L, 24L, 7L, 10L, 6L, 25L,
9L, 22L, 2L, 20L, 8L, 17L, 21L, 11L, 1L, 12L, 13L, 3L, 18L,
16L, 24L, 5L, 7L, 14L, 4L, 6L, 25L, 9L, 22L, 15L, 20L, 8L,
17L, 21L, 11L, 1L, 3L, 16L, 24L, 7L, 10L, 6L, 22L, 2L, 8L,
21L, 11L, 1L, 12L, 13L, 3L, 18L, 16L, 24L, 14L, 4L, 10L,
6L, 25L, 9L, 22L, 2L, 20L, 7L, 6L, 25L, 22L, 8L), weight = c(3L,
1L, 3L, 2L, 1L, 1L, 5L, 1L, 8L, 2L, 1L, 2L, 3L, 2L, 5L, 1L,
4L, 1L, 4L, 4L, 4L, 1L, 5L, 13L, 3L, 7L, 3L, 2L, 3L, 8L,
1L, 1L, 1L, 15L, 10L, 7L, 2L, 4L, 2L, 5L, 19L, 23L, 6L, 2L,
11L, 7L, 1L, 1L, 2L, 3L, 3L, 5L, 4L, 5L, 4L, 4L, 21L, 2L,
9L, 8L, 1L, 1L, 12L, 1L, 2L, 1L, 3L, 1L, 6L, 6L, 5L, 6L,
1L, 6L, 22L, 2L, 2L, 9L, 8L, 3L, 13L, 1L, 5L, 6L, 4L, 10L,
13L, 3L, 41L, 46L, 11L, 39L, 9L, 55L, 2L, 108L, 2L, 8L, 31L,
30L, 13L, 39L, 2L, 2L, 1L, 3L, 4L, 8L, 5L, 1L, 8L, 1L, 6L,
1L, 8L, 2L, 3L, 23L, 2L, 12L, 96L, 1L, 3L, 21L, 1L, 6L, 12L,
38L, 4L, 5L, 4L, 4L, 8L, 8L, 3L, 29L, 3L, 11L, 3L, 3L, 63L,
2L, 5L, 18L, 19L, 4L, 25L, 1L, 2L, 3L, 1L, 7L, 6L, 7L, 1L,
3L, 17L, 1L, 3L, 6L, 1L, 4L, 11L, 1L, 5L, 1L, 5L, 1L, 1L,
15L, 4L, 7L, 3L, 1L, 4L, 12L, 8L, 1L, 9L, 32L, 3L, 7L, 5L,
35L, 1L, 1L, 3L, 1L, 6L, 4L, 4L, 12L, 2L, 5L, 4L, 2L, 2L,
9L, 1L, 2L, 3L, 4L, 9L, 13L, 2L, 1L, 25L, 25L, 10L, 14L,
10L, 4L, 59L, 4L, 5L, 21L, 19L, 1L, 8L, 27L, 3L, 5L, 8L,
8L, 11L, 12L, 111L, 5L, 50L, 45L, 15L, 32L, 10L, 49L, 109L,
1L, 8L, 28L, 39L, 53L, 13L, 48L, 5L, 13L, 2L, 20L, 3L, 3L,
27L, 10L, 8L, 1L, 58L, 1L, 7L, 32L, 13L, 21L, 110L, 1L, 17L,
27L, 124L, 1L, 1L, 1L, 2L, 3L, 1L, 1L, 2L, 7L, 1L, 1L, 1L,
2L, 2L, 1L, 5L, 2L, 2L, 2L, 1L, 3L, 3L, 14L, 2L, 2L, 4L,
1L, 3L, 14L, 5L, 8L, 44L, 16L, 14L, 4L, 12L, 4L, 19L, 41L,
47L, 2L, 1L, 11L, 24L, 2L, 18L, 1L, 7L, 5L, 1L, 7L, 3L, 27L,
3L, 15L, 7L, 54L, 1L, 4L, 17L, 5L, 6L, 27L, 1L, 1L, 2L, 3L,
4L, 10L, 56L, 3L, 25L, 25L, 7L, 16L, 5L, 29L, 59L, 3L, 3L,
20L, 17L, 5L, 31L, 3L, 6L, 1L, 4L, 7L, 1L, 3L, 1L, 6L, 5L,
13L, 1L, 2L, 9L, 1L, 15L, 2L, 1L, 16L, 4L, 4L, 3L, 1L, 6L,
17L, 10L, 1L, 13L, 63L, 11L, 12L, 1L, 5L, 1L, 2L, 3L)), row.names = c(NA,
-383L), class = c("tbl_df", "tbl", "data.frame"))
routes_tidy <- tbl_graph(nodes=nodes, edges=edges, directed=FALSE) %>% mutate(neighbors = centrality_degree())
# Filtering out 3 nodes out of the graph as they have no connections and zoom the figure way out
ggraph(routes_tidy, layout="graphopt") +
geom_node_point(aes(size=neighbors, filter=(label!="z" & label!="s" & label!="w"))) +
geom_edge_link(aes(width=weight, alpha=weight)) +
scale_edge_width(range=c(0.2, 2)) +
geom_node_text(aes(label=label, fontface="bold", size=neighbors, filter=(label!="z" & label!="s" & label!="w")), repel=TRUE) +
labs(edge_width="N") +
theme_graph()
答案 0 :(得分:0)
我对整个tidygraph
还是陌生的,偶然发现了这个问题,感到困惑,并认为这是一种了解知识的好方法。因此,我不知道这是错误还是功能,但是由于您的边缘加倍,因此触发了行为:
# Given your edges
edges %>%
filter((from == 1 & to == 2) | from == 2 & to == 1)
# A tibble: 2 x 3
from to weight
<int> <int> <int>
1 1 2 11
2 2 1 3
那些在度中心度的计算中算作2个联系。消除这些双重边缘的一种方法是将网络转换为简单的网络:
routes_simple <-
routes_tidy %>%
morph(to_simple) %>%
crystallise() %>%
pull(graph) %>%
getElement(1) %>%
activate(nodes) %>%
mutate(neighbors = centrality_degree())
现在最大度数是22(最大可能是25)。