在FROM
,RUN
等指令中使用全局ARG变量
例如,我想在第二构建阶段的${CUDA_VERSION}
和FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
中使用libcudnn7=${CUDNN_VERSION}-1+cuda${CUDA_VERSION}
ARG变量
但是将全局ARG变量${CUDA_VERSION}
更改为将FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
9.0从9.0更改为9.0.176
在Ubuntu 18.04,Docker-CE 18.09.04
我尝试了很多事情
.profile
文件,并使用source
命令应用示例dockerfile和构建dockerfile的结果如下
Dockerfile
ARG handler_file=handler.py
ARG handler_name=Handler
ARG HANDLER_DIR=/handler
ARG HANDLER_FILE=${HANDLER_DIR}/${handler_file}
ARG HANDLER_NAME=${handler_name}
# Global arguments for Nvidia-docker
ARG CUDA_VERSION=9.0
ARG CUDNN_VERSION=7.4.1.5
ARG UBUNTU_VERSION=16.04
# == MutiStage Build ==
# 1-Stage
FROM python:3.7-alpine
ARG HANDLER_DIR
ARG HANDLER_FILE
ARG HANDLER_NAME
ARG handler_file
ARG handler_name
ARG CUDA_VERSION
RUN echo "${CUDA_VERSION}"
RUN mkdir -p ${HANDLER_DIR}
WORKDIR ${HANDLER_DIR}
COPY . .
RUN touch ${HANDLER_DIR}/__init__.py
# 2-Stage
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# For Nvidia-Docker
ARG CUDA_VERSION
ARG CUDNN_VERSION
RUN echo "${CUDA_VERSION}"
# Copy directory from 1-stage
ARG HANDLER_DIR
RUN mkdir -p ${HANDLER_DIR}
WORKDIR ${HANDLER_DIR}
COPY --from=0 ${HANDLER_DIR} .
RUN echo "/usr/local/cuda-${CUDA_VERSION}/extras/CUPTI/lib64" > /etc/ld.so.conf.d/cupti.conf
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
wget \
tar \
libgomp1 \
libcudnn7=${CUDNN_VERSION}-1+cuda${CUDA_VERSION} \
python \
python-dev \
python-numpy \
python-pip \
python-setuptools \
python3 \
python3-dev \
python3-numpy \
python3-pip \
python3-setuptools \
python3-tk \
libgtk2.0-dev \
${ADDITIONAL_PACKAGE} \
&& rm -rf /var/lib/apt/lists/*
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
RUN pip3 --no-cache-dir install --upgrade \
pip setuptools
RUN pip3 install --upgrdae pip && \
pip3 install -r requirements.txt
构建消息
...
Step 9/33 : FROM python:3.7-alpine
---> 2caaa0e9feab
...
Step 16/33 : RUN echo "${CUDA_VERSION}"
---> Running in d057b0fd57a7
9.0
...
Step 21/33 : FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
---> 2f9810b1b916
...
Step 24/33 : RUN echo "${CUDA_VERSION}"
---> Running in dc676c2a2992
9.0.176
...
Step 30/33 : RUN apt-get update && apt-get install -y --no-install-recommends build-essential wget tar libgomp1 libcudnn7=${CUDNN_VERSION}-1+cuda${CUDA_VERSION} python python-dev python-numpy python-pip python-setuptools python3 python3-dev python3-numpy python3-pip python3-setuptools python3-tk libgtk2.0-dev ${ADDITIONAL_PACKAGE} && rm -rf /var/lib/apt/lists/*
---> Running in 8518fb8d755c
...
E: Version '7.4.1.5-1+cuda9.0.176' for 'libcudnn7' was not found
The command '/bin/sh -c apt-get update && apt-get install -y --no-install-recommends build-essential wget tar libgomp1 libcudnn7=${CUDNN_VERSION}-1+cuda${CUDA_VERSION} python python-dev python-numpy python-pip python-setuptools python3 python3-dev python3-numpy python3-pip python3-setuptools python3-tk libgtk2.0-dev ${ADDITIONAL_PACKAGE} && rm -rf /var/lib/apt/lists/*' returned a non-zero code: 100
预期结果是docker文件构建成功
但是更改了ARG变量会导致以下错误
E: Version '7.4.1.5-1+cuda9.0.176' for 'libcudnn7' was not found
答案 0 :(得分:0)
我按照以下步骤解决了我的问题
我发布了问题 https://github.com/docker/for-linux/issues/713
# Global arguments for Nvidia-docker
ARG CUDA_VERSION=9.0
ARG CUDNN_VERSION=7.4.1.5
ARG UBUNTU_VERSION=16.04
ARG BACKUP=${CUDA_VERSION}
...
RUN echo "/usr/local/cuda-${BACKUP}/extras/CUPTI/lib64" > /etc/ld.so.conf.d/cupti.conf
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
wget \
tar \
libgomp1 \
libcudnn7=${CUDNN_VERSION}-1+cuda${BACKUP} \
python \
python-dev \
python-numpy \
python-pip \
python-setuptools \
python3 \
python3-dev \
python3-numpy \
python3-pip \
python3-setuptools \
python3-tk \
libgtk2.0-dev \
${ADDITIONAL_PACKAGE} \
&& rm -rf /var/lib/apt/lists/*
...
Dockerfile
# Arguments for Nvidia-Docker
# all combination set in CUDA, cuDNN, Ubuntu is not Incompatible please check REFERENCE OF NVIDIA-DOCKER
# REFERENCE OF NVIDIA-DOCKER
# https://hub.docker.com/r/nvidia/cuda/
ARG handler_file=handler.py
ARG handler_name=Handler
ARG HANDLER_DIR=/handler
ARG HANDLER_FILE=${HANDLER_DIR}/${handler_file}
ARG HANDLER_NAME=${handler_name}
# Global arguments for Nvidia-docker
ARG CUDA_VERSION=9.0
ARG CUDNN_VERSION=7.4.1.5
ARG UBUNTU_VERSION=16.04
ARG BACKUP=${CUDA_VERSION}
# == MutiStage Build ==
# 1-Stage
# Get watcher - if watcher is uploaded on github, remove this line.
FROM python:3.7-alpine
ARG HANDLER_DIR
ARG HANDLER_FILE
ARG HANDLER_NAME
ARG handler_file
ARG handler_name
ARG BACKUP
ARG CUDA_VERSION
RUN echo "${CUDA_VERSION}"
RUN echo "${BACKUP}"
RUN mkdir -p ${HANDLER_DIR}
WORKDIR ${HANDLER_DIR}
COPY . .
RUN touch ${HANDLER_DIR}/__init__.py
# 2-Stage
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG BACKUP
# For Nvidia-Docker
ARG CUDA_VERSION
ARG CUDNN_VERSION
RUN echo "${CUDA_VERSION}"
RUN echo "${BACKUP}"
# Copy directory from 0-stage
ARG HANDLER_DIR
RUN mkdir -p ${HANDLER_DIR}
WORKDIR ${HANDLER_DIR}
COPY --from=0 ${HANDLER_DIR} .
RUN echo "/usr/local/cuda-${BACKUP}/extras/CUPTI/lib64" > /etc/ld.so.conf.d/cupti.conf
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
wget \
tar \
libgomp1 \
libcudnn7=${CUDNN_VERSION}-1+cuda${BACKUP} \
python \
python-dev \
python-numpy \
python-pip \
python-setuptools \
python3 \
python3-dev \
python3-numpy \
python3-pip \
python3-setuptools \
python3-tk \
libgtk2.0-dev \
${ADDITIONAL_PACKAGE} \
&& rm -rf /var/lib/apt/lists/*
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
RUN pip3 --no-cache-dir install --upgrade \
pip setuptools
RUN pip3 install --upgrdae pip && \
pip3 install -r requirements.txt