f1分数总是〜0.75吗?

时间:2019-07-03 12:00:27

标签: python machine-learning scikit-learn data-science xgboost

我正在研究(我认为是什么)一个简单的二进制分类问题。我从参数网格搜索中得到了这个奇怪的结果,无论模型是什么参数,其f1-分数始终为〜0.75。我不确定这是否:a)反映了我对f1-分数误解为度量标准的误解,b)是由于数据或模型(我使用XGBoost)存在问题而需要更正的,或者c)只是表明模型参数基本上无关紧要,我得到的f1分数约为0.75。

更令人困惑的是,对于同一问题的两组完全不同的预测变量,我得到了相同的结果(例如,如果我正在预测房地产价值,一组正在使用邻里价格,而另一组正在使用房屋特征-不同同一问题的预测变量集)。一组参数的范围大约为0.67-0.82,具有近似正常的方差,而第二组参数(如下所示)的每个参数集的f1-得分几乎完全相同,为0.7477。

为了提供更多细节,当前数据集包含大约30,000个示例,一个类大约占示例的60%(另一个是40%)。我还没有深入研究这个新的数据集,但是对于以前的数据集,当我更仔细地检查一个模型时,我发现合理的精度和查全率值随不同的参数集而有所变化,这使我担心模型是只是猜测更普遍的一类。

我正在使用XGBoost,并使用scikit-learn的GridSearchCV。跳过导入等,网格搜索代码为

grid_values = {'n_estimators':[50,100,200,500,1000],'max_depth':[1,3,5,8], 'min_child_weight':range(1,6,2)}

clf=XGBClassifier()

grid_clf=GridSearchCV(clf,param_grid=grid_values,scoring='f1',verbose=10)
grid_clf.fit(game_records,hora)

print('Grid best score (f1): ', grid_clf.best_score_)
print('Grid best parameter (max. f1): ', grid_clf.best_params_)

https://pastebin.com/NSB0yaNi的完整输出,此处显示了一部分(大部分):

Fitting 3 folds for each of 60 candidates, totalling 180 fits
[CV] max_depth=1, min_child_weight=1, n_estimators=50 ................
[CV]  max_depth=1, min_child_weight=1, n_estimators=50, score=0.7477603583426652, total=  11.1s
[CV] max_depth=1, min_child_weight=1, n_estimators=50 ................
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   11.4s remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=50, score=0.74772504549909, total=  11.3s
[CV] max_depth=1, min_child_weight=1, n_estimators=50 ................
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:   23.1s remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=50, score=0.7477773888694436, total=  11.2s
[CV] max_depth=1, min_child_weight=1, n_estimators=100 ...............
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:   34.8s remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=100, score=0.7477603583426652, total=  21.4s
[CV] max_depth=1, min_child_weight=1, n_estimators=100 ...............
[Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:   56.8s remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=100, score=0.74772504549909, total=  21.3s
[CV] max_depth=1, min_child_weight=1, n_estimators=100 ...............
[Parallel(n_jobs=1)]: Done   5 out of   5 | elapsed:  1.3min remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=100, score=0.7477773888694436, total=  21.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=200 ...............
[Parallel(n_jobs=1)]: Done   6 out of   6 | elapsed:  1.7min remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=200, score=0.7477603583426652, total=  41.3s
[CV] max_depth=1, min_child_weight=1, n_estimators=200 ...............
[Parallel(n_jobs=1)]: Done   7 out of   7 | elapsed:  2.4min remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=200, score=0.74772504549909, total=  41.1s
[CV] max_depth=1, min_child_weight=1, n_estimators=200 ...............
[Parallel(n_jobs=1)]: Done   8 out of   8 | elapsed:  3.1min remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=200, score=0.7477773888694436, total=  41.1s
[CV] max_depth=1, min_child_weight=1, n_estimators=500 ...............
[Parallel(n_jobs=1)]: Done   9 out of   9 | elapsed:  3.7min remaining:    0.0s
[CV]  max_depth=1, min_child_weight=1, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=1, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=1, min_child_weight=1, n_estimators=500, score=0.74772504549909, total= 1.8min
[CV] max_depth=1, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=1, min_child_weight=1, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=1, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=1, min_child_weight=1, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=1, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=1, min_child_weight=1, n_estimators=1000, score=0.74772504549909, total= 3.4min

...

[CV] max_depth=3, min_child_weight=1, n_estimators=50 ................
[CV]  max_depth=3, min_child_weight=1, n_estimators=50, score=0.7477773888694436, total=  10.9s
[CV] max_depth=3, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=100, score=0.7477603583426652, total=  21.2s
[CV] max_depth=3, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=100, score=0.74772504549909, total=  21.0s
[CV] max_depth=3, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=100, score=0.7477773888694436, total=  20.9s
[CV] max_depth=3, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=200, score=0.7477603583426652, total=  41.0s
[CV] max_depth=3, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=200, score=0.74772504549909, total=  41.2s
[CV] max_depth=3, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=200, score=0.7477773888694436, total=  41.4s
[CV] max_depth=3, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=3, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=3, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=1, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=3, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=1, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=3, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=1, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=3, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=1, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=3, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=3, min_child_weight=3, n_estimators=50, score=0.7477603583426652, total=  10.9s
[CV] max_depth=3, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=3, min_child_weight=3, n_estimators=50, score=0.74772504549909, total=  11.0s
[CV] max_depth=3, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=3, min_child_weight=3, n_estimators=50, score=0.7477773888694436, total=  10.9s
[CV] max_depth=3, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=100, score=0.7477603583426652, total=  20.9s
[CV] max_depth=3, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=100, score=0.74772504549909, total=  21.0s
[CV] max_depth=3, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=100, score=0.7477773888694436, total=  21.0s
[CV] max_depth=3, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=200, score=0.7477603583426652, total=  41.2s
[CV] max_depth=3, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=200, score=0.74772504549909, total=  41.2s
[CV] max_depth=3, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=200, score=0.7477773888694436, total=  41.2s
[CV] max_depth=3, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=3, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=3, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=3, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=3, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=3, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=3, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=3, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=3, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=3, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=3, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=3, min_child_weight=5, n_estimators=50, score=0.7477603583426652, total=  11.0s
[CV] max_depth=3, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=3, min_child_weight=5, n_estimators=50, score=0.74772504549909, total=  10.9s
[CV] max_depth=3, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=3, min_child_weight=5, n_estimators=50, score=0.7477773888694436, total=  10.9s
[CV] max_depth=3, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=100, score=0.7477603583426652, total=  21.2s
[CV] max_depth=3, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=100, score=0.74772504549909, total=  21.0s
[CV] max_depth=3, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=100, score=0.7477773888694436, total=  21.0s
[CV] max_depth=3, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=200, score=0.7477603583426652, total=  41.1s
[CV] max_depth=3, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=200, score=0.74772504549909, total=  41.3s
[CV] max_depth=3, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=200, score=0.7477773888694436, total=  41.0s
[CV] max_depth=3, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=3, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=3, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=3, min_child_weight=5, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=3, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=5, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=3, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=5, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=3, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=3, min_child_weight=5, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=5, min_child_weight=1, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=1, n_estimators=50, score=0.7477603583426652, total=  10.9s
[CV] max_depth=5, min_child_weight=1, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=1, n_estimators=50, score=0.74772504549909, total=  10.9s
[CV] max_depth=5, min_child_weight=1, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=1, n_estimators=50, score=0.7477773888694436, total=  10.9s
[CV] max_depth=5, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=100, score=0.7477603583426652, total=  21.0s
[CV] max_depth=5, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=100, score=0.74772504549909, total=  21.1s
[CV] max_depth=5, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=100, score=0.7477773888694436, total=  21.0s
[CV] max_depth=5, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=200, score=0.7477603583426652, total=  41.3s
[CV] max_depth=5, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=200, score=0.74772504549909, total=  41.1s
[CV] max_depth=5, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=200, score=0.7477773888694436, total=  41.1s
[CV] max_depth=5, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=5, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=5, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=1, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=5, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=1, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=5, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=1, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=5, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=1, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=5, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=3, n_estimators=50, score=0.7477603583426652, total=  10.9s
[CV] max_depth=5, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=3, n_estimators=50, score=0.74772504549909, total=  10.9s
[CV] max_depth=5, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=3, n_estimators=50, score=0.7477773888694436, total=  11.0s
[CV] max_depth=5, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=100, score=0.7477603583426652, total=  21.3s
[CV] max_depth=5, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=100, score=0.74772504549909, total=  20.9s
[CV] max_depth=5, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=100, score=0.7477773888694436, total=  20.9s
[CV] max_depth=5, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=200, score=0.7477603583426652, total=  41.1s
[CV] max_depth=5, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=200, score=0.74772504549909, total=  41.4s
[CV] max_depth=5, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=200, score=0.7477773888694436, total=  41.1s
[CV] max_depth=5, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=5, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=5, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=3, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=5, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=3, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=5, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=3, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=5, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=3, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=5, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=5, n_estimators=50, score=0.7477603583426652, total=  11.0s
[CV] max_depth=5, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=5, n_estimators=50, score=0.74772504549909, total=  11.0s
[CV] max_depth=5, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=5, min_child_weight=5, n_estimators=50, score=0.7477773888694436, total=  10.9s
[CV] max_depth=5, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=100, score=0.7477603583426652, total=  21.0s
[CV] max_depth=5, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=100, score=0.74772504549909, total=  21.0s
[CV] max_depth=5, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=100, score=0.7477773888694436, total=  21.8s
[CV] max_depth=5, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=200, score=0.7477603583426652, total=  41.2s
[CV] max_depth=5, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=200, score=0.74772504549909, total=  41.6s
[CV] max_depth=5, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=200, score=0.7477773888694436, total=  41.2s
[CV] max_depth=5, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=5, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=5, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=5, min_child_weight=5, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=5, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=5, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=5, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=5, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=5, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=5, min_child_weight=5, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=8, min_child_weight=1, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=1, n_estimators=50, score=0.7477603583426652, total=  10.9s
[CV] max_depth=8, min_child_weight=1, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=1, n_estimators=50, score=0.74772504549909, total=  10.9s
[CV] max_depth=8, min_child_weight=1, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=1, n_estimators=50, score=0.7477773888694436, total=  10.9s
[CV] max_depth=8, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=100, score=0.7477603583426652, total=  21.2s
[CV] max_depth=8, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=100, score=0.74772504549909, total=  21.0s
[CV] max_depth=8, min_child_weight=1, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=100, score=0.7477773888694436, total=  20.9s
[CV] max_depth=8, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=200, score=0.7477603583426652, total=  41.0s
[CV] max_depth=8, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=200, score=0.74772504549909, total=  41.4s
[CV] max_depth=8, min_child_weight=1, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=200, score=0.7477773888694436, total=  41.0s
[CV] max_depth=8, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=8, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=8, min_child_weight=1, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=1, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=8, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=1, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=8, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=1, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=8, min_child_weight=1, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=1, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=8, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=3, n_estimators=50, score=0.7477603583426652, total=  10.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=3, n_estimators=50, score=0.74772504549909, total=  10.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=3, n_estimators=50, score=0.7477773888694436, total=  10.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=100, score=0.7477603583426652, total=  20.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=100, score=0.74772504549909, total=  21.0s
[CV] max_depth=8, min_child_weight=3, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=100, score=0.7477773888694436, total=  20.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=200, score=0.7477603583426652, total=  41.3s
[CV] max_depth=8, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=200, score=0.74772504549909, total=  41.1s
[CV] max_depth=8, min_child_weight=3, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=200, score=0.7477773888694436, total=  41.2s
[CV] max_depth=8, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=8, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=8, min_child_weight=3, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=3, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=8, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=3, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=8, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=3, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=8, min_child_weight=3, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=3, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=8, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=5, n_estimators=50, score=0.7477603583426652, total=  10.9s
[CV] max_depth=8, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=5, n_estimators=50, score=0.74772504549909, total=  10.9s
[CV] max_depth=8, min_child_weight=5, n_estimators=50 ................
[CV]  max_depth=8, min_child_weight=5, n_estimators=50, score=0.7477773888694436, total=  10.9s
[CV] max_depth=8, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=100, score=0.7477603583426652, total=  20.9s
[CV] max_depth=8, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=100, score=0.74772504549909, total=  21.4s
[CV] max_depth=8, min_child_weight=5, n_estimators=100 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=100, score=0.7477773888694436, total=  21.0s
[CV] max_depth=8, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=200, score=0.7477603583426652, total=  41.2s
[CV] max_depth=8, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=200, score=0.74772504549909, total=  41.3s
[CV] max_depth=8, min_child_weight=5, n_estimators=200 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=200, score=0.7477773888694436, total=  41.0s
[CV] max_depth=8, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=8, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=8, min_child_weight=5, n_estimators=500 ...............
[CV]  max_depth=8, min_child_weight=5, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=8, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=5, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=8, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=5, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=8, min_child_weight=5, n_estimators=1000 ..............
[CV]  max_depth=8, min_child_weight=5, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[Parallel(n_jobs=1)]: Done 180 out of 180 | elapsed: 227.8min finished
Grid best score (f1):  0.7477542636024276
Grid best parameter (max. f1):  {'max_depth': 1, 'min_child_weight': 1, 'n_estimators': 50}

1 个答案:

答案 0 :(得分:1)

让我们假设您的分类器将所有内容预测为多数类,那么您的:

precision = tp/(tp+fp) = 60/(60+40) = 0,6
recall = tp/(tp+fn) = 60/(60+0) = 1

和您的f1得分:

f1 = 2*precision*recall/(precision+recall)= 2*0,6*1/(0,6+1)
   = 1,2/1,6= 0,75

因此,您的分类器probalby总是预测多数类别。

要一次检查您的confusion_matrix,可以使用以下命令:

from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_true, y_pred))