我需要在下面运行这样的任务。不知何故,我漏了一点。我知道,由于存在序列化问题,因此无法像这样使用javasparkcontext并传递javafunctions。
我需要以cartesian.size()大小运行多个cassandra查询。有什么建议吗?
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<DateTime> dateTimeJavaRDD = jsc.parallelize(dateTimes); //List<DateTime>
JavaRDD<Integer> virtualPartitionJavaRDD = jsc.parallelize(virtualPartitions); //List<Integer>
JavaPairRDD<DateTime, Integer> cartesian = dateTimeJavaRDD.cartesian(virtualPartitionJavaRDD);
long c = cartesian.map(new Function<Tuple2<DateTime, Integer>, Long>() {
@Override
public Long call(Tuple2<DateTime, Integer> tuple2) throws Exception {
return javaFunctions(jsc).cassandraTable("keyspace", "table").where("p1 = ? and p2 = ?", tuple2._1(), tuple2._2()).count();
}
}).reduce((a,b) -> a + b);
System.out.println("TOTAL ROW COUNT IS: " + c);
答案 0 :(得分:1)
正确的解决方案应该是在数据和Casasndra表之间执行联接。 joinWithCassandraTable function可以满足您的需要-您只需生成Tuple2
的RDD,其中包含p1
和p2
的值,然后调用joinWithCassandra表,如下所示(未经测试,取自我的示例here):
JavaRDD<Tuple2<Integer, Integer>> trdd = cartesian.map(new Function<Tuple2<DateTime, Integer>, Tuple2<Integer, Integer>>() {
@Override
public Tuple2<Integer, Integer> call(Tuple2<DateTime, Integer> tuple2) throws Exception {
return new Tuple2<Integer, Integer>(tuple2._1(), tuple2._2());
}
});
CassandraJavaPairRDD<Tuple2<Integer, Integer>, Tuple2<Integer, String>> joinedRDD =
trdd.joinWithCassandraTable("test", "jtest",
someColumns("p1", "p2"), someColumns("p1", "p2"),
mapRowToTuple(Integer.class, String.class), mapTupleToRow(Integer.class));
// perform counting here...