我已经训练了图像的模型和数据集。现在,我正在尝试运行TFX的评估程序组件:
model_analyzer = Evaluator(
model_exports=channel.as_channel([types.TfxType(
type_name='path/to/evalSavedModel']),
examples=channel.as_channel([types.TfxType(examples)])
)
其中的示例是:
def create_examples():
cwd = '/path/to/dataset/with/two/classes'
keys = ['0', '1']
values = [0, 1]
classes = dict(zip(keys, values))
examples = []
for name, label in classes.items():
class_path = os.path.join(cwd, name)
for img_name in os.listdir(class_path):
img_path = os.path.join(class_path, img_name)
img = Image.open(img_path)
img_raw = img.tobytes()
example = tf.train.Example(features=tf.train.Features(feature={
"img_raw": tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))}))
examples.append(example)
return examples
但是我收到以下错误:
TypeError: [features {
feature {
key: "img_raw"
value {
bytes_list {
value: "\234z^\233 has type list, but expected one of: bytes, unicode
我在这个问题上花了很多时间。请帮忙!
谢谢!