我有一个数据框,我想根据特定值将其子集化。当我尝试执行此操作时,由于sample_df$mentions
中的值内的空白而出现问题。
我使用此脚本来设置数据框:
sample_list <- list()
for (i in colnames(sample_name)){
sample_list <- sapply(sample_df$mentions, function(x)any(x %in% sample_name[[i]]))
new_sample_df <- sample_df[sample_list,]
}
我已经尝试使用strsplit
函数来摆脱空间,但是它带来了其他问题。
sample_df$mentions <- strsplit(as.charater(sample_df$mentions),"[[:space:]]")
谢谢您的帮助。
我的预期结果应该是这样的:
mentions screen_name
5 islambey1453, hamzayerlikaya, tahaayhan, hidoturkoglu15 ak_Furkan54
10 nurhandnci, SSSBBL777, serkanacar007, Chequevera06, kubilayy81 tanrica_gaia
sample_name可复制的数据:
sample_name <- structure(list(Name = structure(2:1, .Label = c("hamzayerlikaya",
"SSSBBL777"), class = "factor")), row.names = c(NA, -2L), class = "data.frame")
sample_df可复制数据:
sample_df <- structure(list(mentions = list(character(0), "srgnsnmz92", character(0),
"Berivan_Aslan_", c("islambey1453", " hamzayerlikaya", " tahaayhan",
" hidoturkoglu15"), character(0), "themarginale", character(0),
character(0), c("nurhandnci", " SSSBBL777", " serkanacar007",
" Chequevera06", " kubilayy81")), screen_name = c("SaadetYakar",
"beraydogru", "EL_Turco_DLC", "hebunagel", "ak_Furkan54", "zaferakyol011",
"melmitem", "mobbingabla", "BekarKronik", "tanrica_gaia")), row.names = c(NA,
10L), class = "data.frame")
答案 0 :(得分:1)
由于mentions
是列表,我们可以使用sapply
并仅选择sample_df
中any
的{{1}}具有mentions
的行在里面。
Name
sample_df[sapply(sample_df$mentions, function(x) any(grepl(pattern, x))), ]
# mentions screen_name
#5 islambey1453, hamzayerlikaya, tahaayhan, hidoturkoglu15 ak_Furkan54
#10 nurhandnci, SSSBBL777, serkanacar007, Chequevera06, kubilayy81 tanrica_gaia
在哪里
pattern
答案 1 :(得分:1)
我们可以循环遍历“名称”,并在grepl
,Reduce
中使用它到单个逻辑向量,并将“ sample_df”行的子集作为子集
sample_df[Reduce(`|`, lapply(as.character(sample_name$Name),
grepl, x = sample_df$mentions)),]
# mentions screen_name
#5 islambey1453, hamzayerlikaya, tahaayhan, hidoturkoglu15 ak_Furkan54
#10 nurhandnci, SSSBBL777, serkanacar007, Chequevera06, kubilayy81 tanrica_gaia
注意:这适用于“名称”列中的任何length
另一个选项是regex_inner_join
library(fuzzyjoin)
library(tidyverse)
regex_inner_join(sample_df, sample_name, by = c("mentions" = "Name")) %>%
select(mentions, screen_name)
# mentions screen_name
#1 islambey1453, hamzayerlikaya, tahaayhan, hidoturkoglu15 ak_Furkan54
#2 nurhandnci, SSSBBL777, serkanacar007, Chequevera06, kubilayy81 tanrica_gaia