我不知道如何解释sklearn(版本20.2)中haversine实现的输出
文档说,“请注意,haversine距离度量标准需要[纬度,经度]形式的数据,并且输入和输出均以弧度为单位。”,因此我应该能够将km乘以6371 (最大距离约为半径)。
从两点开始的有效距离计算如下:
def distance(origin, destination):
lat1, lon1 = origin
lat2, lon2 = destination
radius = 6371 # km
dlat = math.radians(lat2-lat1)
dlon = math.radians(lon2-lon1)
a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) \
* math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = radius * c
return d
distance([32.027240,-81.093190],[41.981876,-87.969982])
1263.103504537151
这是正确的距离。
使用BallTree实现:
from sklearn.neighbors import BallTree
test_points = [[32.027240,41.981876],[-81.093190,-87.969982]]
tree = BallTree(test_points,metric = 'haversine')
results = tree.query_radius(test_points,r = 10,return_distance = True)
results[1]
array([array([0. , 1.53274271]), array([1.53274271, 0. ])],
dtype=object)
与distanceMetric实现相同:
dist = DistanceMetric.get_metric('haversine')
dist.pairwise([[32.027240,41.981876],[-81.093190,-87.969982]])
array([[0. , 1.53274271],
[1.53274271, 0. ]])
我还尝试更改顺序,以防不应该将其输入为[[lat1,lat2],[lon1,lon2]]并且没有得到我可以解释的结果。
有人知道我可以使用sklearn实现从两个坐标获取以千米为单位的距离吗?
答案 0 :(得分:1)
所以问题是sklearn要求所有内容都以<弧度> <弧度为单位,但是我的纬度/经度和半径分别以度/米为单位。在使用之前,我需要进行一些转换:
from sklearn.neighbors import BallTree
earth_radius = 6371000 # meters in earth
test_radius = 10 # meters
test_points = [[32.027240,41.981876],[-81.093190,-87.969982]]
test_points_rad = [[x[0] * np.pi / 180, x[1] * np.pi / 180] for x in test_points ]
tree = BallTree(test_points_rad, metric = 'haversine')
results = tree.query_radius(test_points, r=test_radius/earth_radius, return_distance = True)
答案 1 :(得分:0)
只是为了澄清@flyingmeatball的先前答案,有几件事:
请参见下面的代码示例...
from math import radians
earth_radius = 6371000 # meters in earth
test_radius = 1300000 # meters
test_points = [[32.027240,-81.093190],[41.981876,-87.969982]]
test_points_rad = np.array([[radians(x[0]), radians(x[1])] for x in test_points ])
tree = BallTree(test_points_rad, metric = 'haversine')
ind,results = tree.query_radius(test_points_rad, r=test_radius/earth_radius,
return_distance = True)
print(ind)
print(results * earth_radius/1000)