如何从另一个反应性Rshiny数据帧访问数据表?

时间:2019-07-02 17:37:44

标签: r ggplot2 shinydashboard shiny-reactivity shinyapps

我正在尝试创建一个可基于一个用户上传的文件创建3个不同情节的应用程序。我的方法是创建3个不同的反应数据框,这些框采用原始上载的原始数据,但根据绘图所需的参数进行不同的转换。另外,我正在使用dplyr来过滤/选择每个反应数据帧的列。

但是,每次我尝试在反应函数中调用原始上传的数据时,都会出现以下错误:  “没有适用于“ select_”的适用方法应用于类“ function”的对象  “结果的长度必须为6,而不是0”

对于上下文,我上传的数据有6行。 View data here

我正在尝试: 1.从反应数据帧data()访问数据表 2.选择此反应数据框中的特定行,因此列ID = input $ slider_piechart。饼图将基于在数字滑动条输入中选择的行#构造。

#define UI
ui <- fluidPage(

  # Application title
  titlePanel("Data Visualization -- 2x2 Analysis"),

  tabsetPanel(
    #----------------------------------------------------------------------------------------------------------------------------------------------------------    
    #Data upload tab
    tabPanel("Upload File",
             titlePanel("Upload CSV File"),

             #sidebar layout with input and output definitions--
             sidebarLayout(

               #sidebar panel for inputs --- 
               sidebarPanel(

                 #input-- select file
                 fileInput('file1', 'Choose CSV File', multiple = FALSE,
                           accept=c('text/csv', 
                                    'text/comma-separated-values,text/plain', 
                                    '.csv')),

                 # Horizontal line ----
                 tags$hr(),

                 checkboxInput('header', 'Header', TRUE),
                 radioButtons('sep', 'Separator',
                              c(Comma=',',
                                Semicolon=';',
                                Tab='\t'),
                              ','),
                 radioButtons('quote', 'Quote',
                              c(None='',
                                'Double Quote'='"',
                                'Single Quote'="'"),
                              '"'),
                 tags$hr(),

                 # Input: Select number of rows to display ----
                 radioButtons("disp", "Display",
                              choices = c(Head = "head",
                                          All = "all"),
                              selected = "head")


               ),

               #main panel to display outputs
               mainPanel(

                 #output-- data file
                 dataTableOutput('contents')

               )
             )
    ),
    #--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------    
    #point estimate line plot
    tabPanel("Point Estimate Line Plot",
             pageWithSidebar(
               headerPanel('Point Estimate Line Plot'),
               sidebarPanel(

                 #drop down menu inputs
                 selectInput('xcol','X Variable',""),
                 selectInput('ycol','Y Variable',""),
                 sliderInput("slider_lineplot", label = h3("Select range of samples by Column ID"), min = 0, 
                             max = 20, value = 1),
                 selectInput("specimen","Select Specimen Type column",""),
                 selectInput("LCI","Lower Confidence Interval(LCI):",""),
                 selectInput("UCI","Upper Confidence Interval(UCI):",""),

                 #label inputs
                 textInput("title_lineplot",label="Plot Title",value="Enter text..."),
                 textInput("xlabel_lineplot",label="x-axis label",value="Enter text..."),
                 textInput("ylabel_lineplot",label="y-axis label",value="Enter text..."),
                 numericInput("referenceline","Reference value",0.95,min=0,max=1,step=0.01)
               ),
               mainPanel(
                 plotOutput('lineplot'),
                 br(),
                 br(),
                 dataTableOutput('lineplot_table')

               )
             )

    ),
    #--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------     
    #concentric pie chart
    tabPanel("Concentric Pie Chart",
             pageWithSidebar(
               headerPanel('Pie Chart'),
               sidebarPanel(
                 #label inputs
                 textInput("title",label="Plot Title",value="Enter text..."),
                 sliderInput("slider_piechart", label = h3("Select Column ID"), min = 0, 
                             max = 20, value = 1),
                 selectInput('fill','Select Result Column',""),
                 selectInput('upperbound','Select YMAX Column',""),
                 selectInput('lowerbound','Select YMIN Column',""),
                 selectInput('ref','Select Type Column',"")
               ),
               mainPanel(
                 plotOutput('piechart'),
                 dataTableOutput('piechart_table')
               )
             )

    ),
    #--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------    
    #MOSAIC PLOT
    tabPanel("Mosaic Plot",
             pageWithSidebar(
               headerPanel('2x2 Table Mosaic Plot'),
               sidebarPanel(
                 #label inputs
                 textInput("title_mosaic",label="Plot Title",value="Enter text..."),

                 selectInput('REF','Select Reference column',""),
                 selectInput('SampleType','Select Sample Type column',""),
                 selectInput('GX','Select GX column',"")
               ),
               mainPanel(
                 plotOutput('mosaic'),
                 dataTableOutput('mosaic_table')
               )
             )

    )

  )
)
#--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Define server logic required to read file, and display all the different plots
server<- function(input, output,session) {


  # added "session" because updateSelectInput requires it

  data <- reactive({ 
    req(input$file1) ## ?req #  require that the input is available

    inFile <- input$file1 

    # tested with a following dataset: write.csv(mtcars, "mtcars.csv")
    # and                              write.csv(iris, "iris.csv")
    df <- read.csv(inFile$datapath, header = input$header, sep = input$sep,
                   quote = input$quote)

    #augment data set. Add Sensitivity(PPA), Specificity(NPA), False Positive Rate(1-specificity), and 95% confidence intervals for PPA and NPA


    #Tp = true positive, Fp = false positive, Fn = false negative, Tn = True negative
    #add PPA and NPA
    df$PPA <- round((df$TP)/(df$TP+df$FN),3)   #sensitivity = Tp/(Tp+Fn)
    df$NPA <- round((df$TN)/(df$TN+df$FP),3)      #specificity = Tn/(Tn+Fp)

    #----------------------------------------------------------------------------------------------------------------------------------------------------------------------
    #add wilson confidence intervals
    #----------------------------------------------------------------------------------------------------------------------------------------------------------------------
    #Sensitivity(PPA) calculations-- first calculate Q1, Q2, Q3 quantiles
    Q1_se <- (2*df$TP)+3.84

    FNR <- (df$FN)/(df$TP+df$FN)   #false negative rate(FNR) = Fn/(Fn+Tp)
    Q2_se <- 1.96 * sqrt(3.84 + (4*df$TP*FNR))

    Q3_se <- (2*(df$TP+df$FN))+7.68

    #95% confidence intervals

    #lower bound CI(LCI) and upper bound CI(UCI) for PPA
    df$PPA_LCI <- round((Q1_se-Q2_se)/(Q3_se),3)
    df$PPA_UCI <- round((Q1_se+Q2_se)/(Q3_se),3)
    #----------------------------------------------------------------------------------------------------------------------------------------------------------------------
    #Specificity(NPA)calculations-- first calculate Q1, Q2, Q3 quantiles
    Q1_sp <- (2*df$TN)+3.84

    TNR <- (df$TN)/(df$TN+df$FP)   #false negative rate(FNR) = Fn/(Fn+Tp)
    Q2_sp <- 1.96 * sqrt(3.84 + (4*df$FP*TNR))

    Q3_sp <- (2*(df$FP+df$TN))+7.68

    #95% confidence intervals

    #lower bound CI(LCI) and upper bound CI(UCI) for NPA
    df$NPA_LCI <- round((Q1_sp-Q2_sp)/(Q3_sp),3)
    df$NPA_UCI <- round((Q1_sp+Q2_sp)/(Q3_sp),3)


    df <- as.data.frame(df)
    #datalist <- list(df=df, PPA=df$PPA, NPA=df$NPA, PPA_LCI=df$PPA_LCI, PPA_UCI=df$PPA_UCI,NPA_LCI=df$NPA_LCI,NPA_UCI=df$NPA_UCI,ColumnID=df$`Column ID`)
    #datalist

    return(df)

  })


  #---------------------------------------------------------------
  lineplot_dataframe <- reactive({

    #df_lineplot <- filter(data(),data()$`Column ID`==1:input$slider_lineplot)
    #df_lineplot <- filter(datalist$df,datalist$ColumnID==1:input$slider_lineplot)
    df_lineplot <- subset(df,df$`Column ID`==1:input$slider_lineplot)
    #line plot create data frame
    df2_lineplot <- data.frame(matrix(nrow=dim(df_lineplot)[1],ncol=7))
    colnames(df2_lineplot) <- c("SpecimenType","PPA","NPA","PPA_upper","PPA_lower","NPA_upper","NPA_lower")

    df2_lineplot$SpecimenType <- df_lineplot$`Specimen Type`

    df2_lineplot$PPA<- round(df_lineplot$PPA,3)
    df2_lineplot$NPA<- round(df_lineplot$NPA,3)

    df2_lineplot$PPA_lower <- round(df_lineplot$PPA_LCI,3)
    df2_lineplot$PPA_upper <- round(df_lineplot$PPA_UCI,3)

    df2_lineplot$NPA_lower <- round(df_lineplot$NPA_LCI,3)
    df2_lineplot$NPA_upper <- round(df_lineplot$NPA_UCI,3)

    df2_lineplot <- as.data.frame(df2_lineplot)

    #update select input for line plot
    updateSelectInput(session, inputId = 'xcol', label = 'X Variable',
                      choices = names(df2_lineplot), selected = "")
    updateSelectInput(session, inputId = 'ycol', label = 'Y Variable',
                      choices = names(df2_lineplot), selected = "")
    updateSelectInput(session, inputId = 'specimen', label = 'Select Specimen Type column',
                      choices = names(df2_lineplot), selected = "")
    updateSelectInput(session, inputId = 'LCI', label = 'Lower Confidence Interval(LCI):',
                      choices = names(df2_lineplot), selected = "")
    updateSelectInput(session, inputId = 'UCI', label = 'Upper Confidence Interval(UCI):',
                      choices = names(df2_lineplot), selected = "")

    return(df2_lineplot)

  })
  #---------------------------------------------------------------
  #create reactive table for pie chart information
  PieData_extracted <- reactive({


    #PF <- filter(select(data(),1,6:9),data()$`Column ID`==input$slider_piechart)
    PF <- subset(df,select=c(1,6:9),df$`Column ID`==input$slider_piechart)
    #PF <- data(df) %>%
      #dplyr::select(1, 6:9) %>%
      #dplyr::filter(data(df)$`Column ID` == input$slider_piechart)

    PF2 <- data.frame(matrix(nrow=4, ncol=7))
    colnames(PF2) <- c("Type","Result","Result_transformed","Value","Percent","YMIN","YMAX")
    PF2$Result <- colnames(PF)[2:5]
    PF2$Value <- c(PF$TP,PF$FN,PF$TN,PF$FP)
    PF2$Result_transformed <- c(0,0,1,1)
    PF2$Type <- ifelse(PF2$Result_transformed==0,"Reference Positive","Reference Negative")

    #percentage calculations
    PF2$Percent <- round((PF2$Value/sum(PF2$Value))*100,2)
    PF2$YMAX <- cumsum(PF2$Percent)
    PF2$YMIN <- c(0,cumsum(PF2$Percent)[1:3])

    #update select input for pie chart
    updateSelectInput(session, inputId = 'fill', label = 'Select result(i.e TP, FN)',
                      choices = names(PF2)[2], selected = "")
    updateSelectInput(session, inputId = 'upperbound', label = 'Select YMAX Column',
                      choices = names(PF2)[7], selected = "")
    updateSelectInput(session, inputId = 'lowerbound', label = 'Select YMIN Column',
                      choices = names(PF2)[6], selected = "")
    updateSelectInput(session, inputId = 'ref', label = 'Select Reference Column',
                      choices = names(PF2)[1], selected = "")


    return(PF2)


  })

  #---------------------------------------------------------------
  #mosaic plot table
  MosaicDF <- reactive({

    #display mosaic 
    Mosaic_filtered <- select(PieData_extracted(),-c(3,5:7))

    #change data frame sample type according to column ID
    Mosaic_sample <- filter(select(df,1,4,6:9),df$`Column ID`==input$slider_piechart)



    #data transformation
    names(Mosaic_filtered)[1]<-"REF"
    Mosaic_filtered$SampleType <- Mosaic_sample$`Specimen Type`
    Mosaic_filtered$GX <- c("POS","NEG","NEG","POS")
    Mosaic_filtered$REF <- c("POS","POS","NEG","NEG")
    Mosaic_filtered$F2 <- factor(as.character(Mosaic_filtered$Value))
    MYRaw <- Mosaic_filtered[rep(rownames(Mosaic_filtered),as.numeric(as.character(Mosaic_filtered$F2))), ]
    MYRaw <- as.data.frame(MYRaw)

    #update select input for mosaic plot
    updateSelectInput(session, inputId = 'REF', label = 'Select Reference column',
                      choices = names(Mosaic_filtered), selected = "")
    updateSelectInput(session, inputId = 'SampleType', label = 'Select Sample Type column',
                      choices = names(Mosaic_filtered), selected = "")
    updateSelectInput(session, inputId = 'GX', label = 'Select GX column',
                      choices = names(Mosaic_filtered), selected = "")

    return(Mosaic_filtered)

  })

  #____________________________________________________   
  #display the data you uploaded
  output$contents <- renderDataTable({
    data()
  })

  output$lineplot_table <- renderDataTable({
    lineplot_dataframe()
  })


  output$piechart_table <- renderDataTable({
    PieData_extracted()
  })

  output$mosaic_table <- renderDataTable({
    MosaicDF()
  })
  #_____________________________________________________________   
  #display the line plots

  output$lineplot <- renderPlot({

    #ggplot
    ggplot(data = lineplot_dataframe(), aes_string(x =1:dim(lineplot_dataframe())[1], y = input$ycol)) + geom_line(data=lineplot_dataframe(),color='red')+geom_point(data=lineplot_dataframe(),color='blue')+

      geom_segment(aes_string(x=1,y=input$referenceline,xend=dim(lineplot_dataframe())[1],yend=input$referenceline),linetype="dashed",data=lineplot_dataframe())+

      geom_errorbar(aes_string(ymin=input$LCI,ymax=input$UCI),width=0.3)+

      labs(title=input$title_lineplot,x=input$xlabel_lineplot,y=input$ylabel_lineplot)+
      theme_update(plot.title = element_text(hjust = 0.5,size=16,face="bold"),axis.text=element_text(size=14),axis.title=element_text(size=14,face="bold"))+

      annotate("text",x=1.5,y=input$referenceline+0.002,label=paste("Reference Line =",input$referenceline))+
      scale_x_discrete("Specimen Type",limits=SpecimenType)

  })

  #________________________________________________________________________
  #display the pie chart


  #PIE CHART
  output$piechart <- renderPlot({

    #treechart
    patch <- ggplot(data=PieData_extracted()) + geom_rect(aes_string(fill=input$fill, ymax=input$upperbound, ymin=input$lowerbound, xmax=4, xmin=3)) +geom_rect(aes_string(fill=input$ref, ymax=input$upperbound, ymin=input$lowerbound, xmax=3, xmin=0)) +xlim(c(0, 4)) + theme(aspect.ratio=1) 


    #convert to polar coordinates
    piechart <- patch + coord_polar(theta="y",start=0,direction=1)

    #add chart title
    piechart_labeled <- piechart + labs(title=input$title,subtitle="PPA vs NPA",x="",y="")

    #print result
    piechart_labeled+scale_fill_discrete(name="Diagnostic Result")
  })
  #__________________________________________________________________________
  #display mosaic plot

  output$mosaic <- renderPlot({

    ggplot(data=MosaicDF())+geom_mosaic(aes(weight = Value, x = product(!!sym(input$REF), !!sym(input$GX)), fill = !!sym(input$REF)))+labs(title=input$title_mosaic,x="REF",y="GX")
  })

}


# Run the application 
shinyApp(ui = ui, server = server)

”没有适用于“ select_”的适用于“功能”类对象的方法  “结果的长度必须为6,而不是0”

0 个答案:

没有答案