我正在使用不平衡学习对数据进行过采样。我想知道使用过采样方法后每个类中有多少个条目。 这段代码很好用:
import imblearn.over_sampling import SMOTE
from collections import Counter
def oversample(x_values, y_values):
oversampler = SMOTE(random_state=42, n_jobs=-1)
x_oversampled, y_oversampled = oversampler.fit_resample(x_values, y_values)
print("Oversampling training set from {0} to {1} using {2}".format(dict(Counter(y_values)), dict(Counter(y_over_sampled)), oversampling_method))
return x_oversampled, y_oversampled
但是我改用管道,因此可以使用GridSearchCV查找最佳的过采样方法(ADASYN,SMOTE和BorderlineSMOTE除外)。因此,我从来不会自己真正打电话给fit_resample,也不会像这样丢失我的输出:
from imblearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestClassifier
pipe = Pipeline([('scaler', MinMaxScaler()), ('sampler', SMOTE(random_state=42, n_jobs=-1)), ('estimator', RandomForestClassifier())])
pipe.fit(x_values, y_values)
上采样有效,但是我失去了训练集中每个班级有多少条目的输出。
是否有一种使用管道获得与第一个示例相似的输出的方法?
答案 0 :(得分:1)
理论上是。当使用过采样器时,将创建属性sampling_strategy_
,其中包含在调用fit_resample
时要生成的少数类的样本数。您可以使用它来获得与上述示例类似的输出。这是根据您的代码修改的示例:
# Imports
from collections import Counter
from sklearn.datasets import make_classification
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestClassifier
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
# Create toy dataset
X, y = make_classification(weights=[0.20, 0.80], random_state=0)
init_class_distribution = Counter(y)
min_class_label, _ = init_class_distribution.most_common()[-1]
print(f'Initial class distribution: {dict(init_class_distribution)}')
# Create and fit pipeline
pipe = Pipeline([('scaler', MinMaxScaler()), ('sampler', SMOTE(random_state=42, n_jobs=-1)), ('estimator', RandomForestClassifier(random_state=23))])
pipe.fit(X, y)
sampling_strategy = dict(pipe.steps).get('sampler').sampling_strategy_
expected_n_samples = sampling_strategy.get(min_class_label)
print(f'Expected number of generated samples: {expected_n_samples}')
# Fit and resample over-sampler pipeline
sampler_pipe = Pipeline(pipe.steps[:-1])
X_res, y_res = sampler_pipe.fit_resample(X, y)
actual_class_distribution = Counter(y_res)
print(f'Actual class distribution: {actual_class_distribution}')