我有一个6列3行的数据框。数据帧由元组组成,例如(3, 5)(4, 5)(3, 5)(5, 5)(2, 3)(5, 3)
。
我需要创建一个函数,在行中添加以相同的第一个数字开头的第二个元组,例如(3, 5)
将与(3,5)
对应,然后我们将两个5相加,得到10和将总数保存到同一数据框中的新列中。
答案 0 :(得分:0)
如果您只想过滤第一个元素的某些值。您可以这样做:
import pandas as pd
df= pd.DataFrame({
'tuple1': [(3,1), (4,3), (2,2), (3,1)],
'tuple2': [(4,1), (1,1), (2,1), (5,2)],
'tuple3': [(1,2), (2,3), (3,4), (2,5)],
'tuple4': [(3,4), (1,3), (2,2), (3,1)],
'tuple5': [(4,2), (1,2), (3,1), (5,4)],
})
def sum_tuples(df, tup_columns, sum_column, filter_value):
df[sum_column]= 0
for col in tup_columns:
df[sum_column]+= df[col].map(lambda t: t[1] if t[0] == filter_value else 0)
sum_tuples(df, ['tuple1', 'tuple2', 'tuple3', 'tuple4', 'tuple5'], 'sum_threes', 3)
它检查作为列表传递的列中的所有元组(tuple1,...),并将具有确定值的所有第二个成分(示例中为3)相加,并将结果存储在框架的指定结果列中(在示例中为sum_threes)。结果是5、0、5、2。
如果您想根据所有元组的第一个值来求和,而不必多次调用该函数,则可以执行以下操作:
# define a function that handles the tuples of a row
# and outputs the sum for all tuples whose first component
# occured more than once
def agg_tuples(tuples):
d= dict()
multiple= set()
for k, v in tuples:
if k in d:
# the first component already occured before
# for this row --> memorize this in multiple
d[k]+= v
multiple.add(k)
else:
# value k occured the first time
d[k]= v
# now only return the sums of the tuples that occured multiple times
return [(k, d[k]) for k in multiple]
# prepare an auxillary series with all tuple columns in one list
lists= df.apply(lambda r: agg_tuples([r[col] for col in ['tuple1', 'tuple2', 'tuple3', 'tuple4', 'tuple5']]), axis='columns')
# the following line would be the number of colums we
# need at least to store all the result tuples
mx= max(lists.map(len))
# now we just need to split the list into seperate columns
# therefore we define three columns
result_cols= ['res1', 'res2', 'res3']
for idx, col in enumerate(result_cols):
df[col]= lists.map(lambda l: l[idx] if idx<len(l) else None)