我正在尝试实现动态共享内存,但它不起作用。请查看代码,并告诉我我缺少什么-问题似乎出在gpu_configuration()附近。
以下是基本的动态共享内存代码。我已将其与https://github.com/NVIDIA-developer-blog/code-samples/blob/master/series/cuda-cpp/shared-memory/shared-memory.cu进行了比较,无法弄清缺少的内容。
如果我要删除函数gpu_configuration(),它可以正常工作,但是在那里使用函数gpu_configuration进行了非法的内存访问。我将此功能用作另一段代码的一部分,在那里一切正常。
我在Kubuntu 14.4,CUDA 7.0上使用Quadro 2000卡-卡的详细信息通过gpu_configuration打印出来,并在下面列出。
顺便说一句,shared-memory.cu代码在我的机器上可以正常工作,因此卡或共享内存都没有问题。
#include <stdio.h>
inline void gpuAssert (cudaError_t code, const char *file, const char *func, int line);
typedef struct gpu_config {
int n_threads; // execution of kernel with given index
int n_blocks; // bundle of threads - also warp size
int n_grid; // bundle of blocks
int dev_count; // number of cuda devices
size_t shmem; // sh_mem per block
size_t free_mem; // free memory on the card
size_t tot_mem; // total memory on the card
struct cudaDeviceProp dev_prop; // device properties
} gpu_config;
#define CUDA_GLOBAL_CHECK {gpuErrChk (cudaPeekAtLastError ()); gpuErrChk (cudaDeviceSynchronize ());}
#define gpuErrChk(ans) {gpuAssert((ans), \
__FILE__, __func__, __LINE__);}
#define CudaDbgPrn(M, ...) {printf ("DevDEBUG:%s:%s:%d: " M "\n", \
__FILE__, __func__, (int) __LINE__, ##__VA_ARGS__);}
#define Dbg(M, ...) fprintf(stderr, "DEBUG %s:%s:%d: " M "\n", __FILE__, \
__func__, __LINE__, ##__VA_ARGS__)
inline void gpuAssert (cudaError_t code, const char *file, const char *func, int line)
{
if (code != cudaSuccess) {
fprintf(stderr,"CUDA call from file:%s func:%s %d: %s:%s failed\n", file, func, line, cudaGetErrorName(code), cudaGetErrorString(code));
exit (code);
}
}
static void gpu_configuration (gpu_config *gc);
static void gpu_configuration (gpu_config *gc)
{
int i = 0;
gpuErrChk (cudaDeviceReset ()); // reset device
gpuErrChk (cudaGetDeviceCount (&gc -> dev_count));
Dbg("Device count %d", gc -> dev_count);
gpuErrChk (cudaGetDeviceProperties (&(gc -> dev_prop), i));
gc -> n_threads = gc -> dev_prop.maxThreadsPerBlock;
gc -> n_blocks = gc -> dev_prop.warpSize;
dim3 block (gc -> n_blocks);
gc -> n_grid = (gc -> n_blocks + block.x - 1) / block.x;
gc -> shmem = gc -> dev_prop.sharedMemPerBlock;
gpuErrChk (cudaMemGetInfo (&(gc -> free_mem), &(gc -> tot_mem)));
Dbg ("Dev prop name: %s, tot_mem: %u sharedMemPerBlock %u\nwarpSize %d maxThreadsPerBlock %d\nmaxthreads per mprocessor %d",
gc -> dev_prop.name, (unsigned) gc -> dev_prop.totalGlobalMem,
(unsigned) gc -> dev_prop.sharedMemPerBlock,
gc -> dev_prop.warpSize, gc -> dev_prop.maxThreadsPerBlock,
gc -> dev_prop.maxThreadsPerMultiProcessor);
}
#define MAX_SIZE 4000
#define NUM 2
// #define NUM 32
__global__ void kernel(int *d_data)
{
extern __shared__ int sdata[];
sdata[threadIdx.x] = threadIdx.x;
__syncthreads ();
CudaDbgPrn ("sdata [%u]=%u", (unsigned) threadIdx.x, (unsigned) sdata[threadIdx.x]);
CudaDbgPrn ("d_data [%u]=%u", (unsigned) threadIdx.x, (unsigned) d_data[threadIdx.x]);
d_data[threadIdx.x] = sdata[threadIdx.x];
CudaDbgPrn ("sdata [%u]=%u d_data [%u]=%u", (unsigned) threadIdx.x, (unsigned) sdata[threadIdx.x], (unsigned) threadIdx.x, (unsigned) d_data[threadIdx.x]);
}
int main()
{
int *d_data;
gpuErrChk (cudaMalloc ((void**)&d_data, sizeof(int) * MAX_SIZE));
gpuErrChk (cudaMemset (d_data, '\0', sizeof(int) * MAX_SIZE));
gpu_config gc;
gpu_configuration (&gc);
kernel<<<1, NUM, (NUM * sizeof (int))>>> (d_data);
CUDA_GLOBAL_CHECK;
cudaFree(d_data);
return 0;
}
这是我在命令行中得到的:
rinka@Desktop:~/Documents/dev/code$ nvcc -Xptxas -v shmem_test.cu -o shmem
ptxas info : 139 bytes gmem, 40 bytes cmem[14]
ptxas info : Compiling entry function '_Z6kernelPi' for 'sm_20'
ptxas info : Function properties for _Z6kernelPi
40 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 21 registers, 40 bytes cmem[0]
rinka@Desktop:~/Documents/dev/code$ ./shmem
DEBUG shmem_test.cu:gpu_configuration:36: Device count 1
DEBUG shmem_test.cu:gpu_configuration:51: Dev prop name: Quadro 2000, tot_mem: 1073414144 sharedMemPerBlock 49152
warpSize 32 maxThreadsPerBlock 1024
maxthreads per mprocessor 1536
DevDEBUG:shmem_test.cu:kernel:65: sdata [0]=0
DevDEBUG:shmem_test.cu:kernel:65: sdata [1]=1
CUDA call from file:shmem_test.cu func:main 82: cudaErrorIllegalAddress:an illegal memory access was encountered failed
答案 0 :(得分:3)
调用gpu_configuration(&gc)
时,其内部的cudaDeviceReset()
调用会取消分配当前设备上所有先前分配的内存。因此,d_data
无效并导致内核失败。
您可以删除cudaDeviceReset()
呼叫以解决此问题。另外,gpu_configuration
调用应该是程序中的第一个函数调用,以便后续的内存分配保持有效。