我正在尝试通过采样多个步骤来模拟一些数据。
第一步(创建x)工作正常。
第二步,我想通过基于x的值从不同向量中采样来创建变量y。
我的代码运行没有错误,但是由于仅对x ==“ A”采样一个值,然后将该值重新用于x ==“ A”的所有后续行,因此我尝试实现的目标失败。我希望它为x ==“ A”
的每一行采样一次代码:
library(tidyverse)
set.seed(1)
data <- tibble(
x = sample(c("A", "B", "C"), size = 10000, prob = c(0.1, 0.2, 0.7), replace = TRUE),
y = case_when(
x == "A" ~ sample(c("A1", "A2", "A3"), size = 1, prob = c(0.3, 0.4, 0.3)),
x == "B" ~ sample(c("B1", "B2", "B3"), size = 1, prob = c(0.3, 0.4, 0.3)),
x == "C" ~ sample(c("C1", "C2", "C3"), size = 1, prob = c(0.3, 0.4, 0.3)),
))
unique(data$x)
[1] "C" "A" "B"
unique(data$y)
[1] "C1" "A2" "B3"
如果代码按预期运行,unique(data$y)
应该返回类似于[1] "A1", "A2", "A3", "B1", "B2", "B3", "C1", "C2", "C3"
我知道问题出在sample()中的size = 1
自变量,但是我可以用它代替什么呢?删除它会返回错误:
Error: `x == "A" ~ sample(c("A1", "A2", "A3"), prob = c(0.3, 0.4, 0.3))` must be length 100 or one, not 3
我已经尝试过size = nrow(.data)
和size=nrow(.)
,但这也会返回错误。
对此有简单的解决方法吗?
答案 0 :(得分:2)
也许有一种更简单的方法,但这与您的原始代码很接近,并且可以正常工作...
data <- tibble(
x = sample(c("A", "B", "C"), size = 10000, prob = c(0.1, 0.2, 0.7), replace = TRUE)) %>%
rowwise() %>%
summarise(x= x,
y = case_when(
x == "A" ~ sample(c("A1", "A2", "A3"), size = 1, prob = c(0.3, 0.4, 0.3)),
x == "B" ~ sample(c("B1", "B2", "B3"), size = 1, prob = c(0.3, 0.4, 0.3)),
x == "C" ~ sample(c("C1", "C2", "C3"), size = 1, prob = c(0.3, 0.4, 0.3)),
))
答案 1 :(得分:1)
它与矢量化功能和回收有关。如果将其向量化,它将回收相同的值。如果您使用循环执行此操作,它将起作用。例如,
v1 <- c('A', 'A', 'B', 'B', 'C', 'C', 'C', 'A', 'A')
#Vectorized ifelse
ifelse(v1 == 'A', sample(c("A1", "A2", "A3"), size = 1, prob = c(0.3, 0.4, 0.3)), NA)
#[1] "A3" "A3" NA NA NA NA NA "A3" "A3"
#Not vectorized if/else with a loop,
sapply(v1, function(i) if (i == 'A') { sample(c("A1", "A2", "A3"), size = 1, prob = c(0.3, 0.4, 0.3)) }else {NA})
# A A B B C C C A A
#"A2" "A3" NA NA NA NA NA "A2" "A1"
答案 2 :(得分:1)
如果将其分为多个步骤,则很容易理解
library(dplyr)
data <- tibble(
x = sample(c("A", "B", "C"), size = 10000,
prob = c(0.1, 0.2, 0.7), replace = TRUE))
data <- data %>%
mutate(y = case_when(
x == "A" ~ sample(c("A1", "A2", "A3"), size = n(),
prob = c(0.3, 0.4, 0.3), replace = TRUE),
x == "B" ~ sample(c("B1", "B2", "B3"), size = n(),
prob = c(0.3, 0.4, 0.3), replace = TRUE),
x == "C" ~ sample(c("C1", "C2", "C3"), size = n(),
prob = c(0.3, 0.4, 0.3), replace = TRUE),
))
unique(data$y)
#[1] "C2" "B3" "A1" "C3" "B1" "C1" "B2" "A3" "A2"
或者,如果您想继续前进,则需要使用size
指定与x
提到的参数相同的replace = TRUE
data <- tibble(
x = sample(c("A", "B", "C"), size = 10000,
prob = c(0.1, 0.2, 0.7), replace = TRUE),
y = case_when(
x == "A" ~ sample(c("A1", "A2", "A3"), size = 10000,
prob = c(0.3, 0.4, 0.3), replace = TRUE),
x == "B" ~ sample(c("B1", "B2", "B3"), size = 10000,
prob = c(0.3, 0.4, 0.3), replace = TRUE),
x == "C" ~ sample(c("C1", "C2", "C3"), size = 10000,
prob = c(0.3, 0.4, 0.3), replace = TRUE),
))