Kafka流创建一个简单的物化视图

时间:2019-07-02 05:09:01

标签: java apache-kafka-streams spring-kafka

我有一些带有非唯一String字段和事件时间戳记的事件进入Kafka。我想创建这些事件的实例化视图,以便可以查询它们。例如:

  1. 显示所有事件
  2. 显示所有field1 = some string
  3. 中的事件
  4. 显示与多个字段匹配的所有事件
  5. 显示2个日期之间的事件

我看到的所有示例在流上都有一个聚合,一个联接或其他一些转换操作。我找不到在事件集上创建视图的单个简单示例。我不想执行任何操作,我只想能够查询流中的原始事件。

我正在使用Spring Kafka,因此使用Spring Kafka的示例将是理想的。

我能够将消息发送到Kafka并使用它们。但是,我无法创建实例化视图。

我有以下代码可以过滤事件(不是我真正想要的,我想要所有事件,但是我只是想看看是否可以得到实例化视图):

@StreamListener
    public void process(@Input("input") KTable<String,MyMessage> myMessages) {
        keyValueStore = interactiveQueryService.getQueryableStore(ALL_MESSAGES,QueryableStoreTypes.keyValueStore());

        myMessages.filter((key,value) -> (value.getKey() != null));
                Materialized.<String,MyMessage,KeyValueStore<Bytes,byte[]>> as(ALL_MESSAGES)
                .withKeySerde(Serdes.String())
                .withValueSerde(new MyMessageSerde());

这引发异常:

java.lang.ClassCastException: [B cannot be cast to MyMessage
at org.apache.kafka.streams.kstream.internals.KTableFilter.computeValue(KTableFilter.java:57)
    at org.apache.kafka.streams.kstream.internals.KTableFilter.access$300(KTableFilter.java:25)
    at org.apache.kafka.streams.kstream.internals.KTableFilter$KTableFilterProcessor.process(KTableFilter.java:79)
    at org.apache.kafka.streams.kstream.internals.KTableFilter$KTableFilterProcessor.process(KTableFilter.java:63)
    at org.apache.kafka.streams.processor.internals.ProcessorNode$1.run(ProcessorNode.java:50)
    at org.apache.kafka.streams.processor.internals.ProcessorNode.runAndMeasureLatency(ProcessorNode.java:244)
    at org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:133)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:143)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:126)
    at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:90)
    at org.apache.kafka.streams.kstream.internals.ForwardingCacheFlushListener.apply(ForwardingCacheFlushListener.java:42)
    at org.apache.kafka.streams.state.internals.CachingKeyValueStore.putAndMaybeForward(CachingKeyValueStore.java:101)
    at org.apache.kafka.streams.state.internals.CachingKeyValueStore.access$000(CachingKeyValueStore.java:38)
    at org.apache.kafka.streams.state.internals.CachingKeyValueStore$1.apply(CachingKeyValueStore.java:83)
    at org.apache.kafka.streams.state.internals.NamedCache.flush(NamedCache.java:141)
    at org.apache.kafka.streams.state.internals.NamedCache.flush(NamedCache.java:99)
    at org.apache.kafka.streams.state.internals.ThreadCache.flush(ThreadCache.java:125)
    at org.apache.kafka.streams.state.internals.CachingKeyValueStore.flush(CachingKeyValueStore.java:123)
    at org.apache.kafka.streams.state.internals.InnerMeteredKeyValueStore.flush(InnerMeteredKeyValueStore.java:284)
    at org.apache.kafka.streams.state.internals.MeteredKeyValueBytesStore.flush(MeteredKeyValueBytesStore.java:149)
    at org.apache.kafka.streams.processor.internals.ProcessorStateManager.flush(ProcessorStateManager.java:239)
    ... 21 more

我不明白为什么,因为我将商店的valueSerde设置为MyMessageSerde,它知道如何将MyMessage序列化/反序列化为字节数组。

更新

我将代码更改为以下内容:

myMessages.filter((key,value) -> (value.getKey() != null));

并将以下内容添加到我的application.yml

spring.cloud.stream.kafka.streams.bindings.input:
  consumer:
    materializedAs: all-messages
    key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
    value-deserializer: MyMessageDeserializer  `

现在,我得到以下堆栈跟踪:

Exception in thread "raven-a43f181b-ccb6-4d9b-a8fd-9fe96542c210-StreamThread-1" org.apache.kafka.streams.errors.ProcessorStateException: task [0_3] Failed to flush state store all-messages
at org.apache.kafka.streams.processor.internals.ProcessorStateManager.flush(ProcessorStateManager.java:242)
at org.apache.kafka.streams.processor.internals.AbstractTask.flushState(AbstractTask.java:202)
at org.apache.kafka.streams.processor.internals.StreamTask.flushState(StreamTask.java:420)
at org.apache.kafka.streams.processor.internals.StreamTask.commit(StreamTask.java:394)
at org.apache.kafka.streams.processor.internals.StreamTask.commit(StreamTask.java:382)
at org.apache.kafka.streams.processor.internals.AssignedTasks$1.apply(AssignedTasks.java:67)
at org.apache.kafka.streams.processor.internals.AssignedTasks.applyToRunningTasks(AssignedTasks.java:362)
at org.apache.kafka.streams.processor.internals.AssignedTasks.commit(AssignedTasks.java:352)
at org.apache.kafka.streams.processor.internals.TaskManager.commitAll(TaskManager.java:401)
at org.apache.kafka.streams.processor.internals.StreamThread.maybeCommit(StreamThread.java:1042)
at org.apache.kafka.streams.processor.internals.StreamThread.runOnce(StreamThread.java:845)
at org.apache.kafka.streams.processor.internals.StreamThread.runLoop(StreamThread.java:767)
at org.apache.kafka.streams.processor.internals.StreamThread.run(StreamThread.java:736)
Caused by: java.lang.ClassCastException: [B cannot be cast to MyMessage
at org.apache.kafka.streams.kstream.internals.KTableFilter.computeValue(KTableFilter.java:57)
at org.apache.kafka.streams.kstream.internals.KTableFilter.access$300(KTableFilter.java:25)
at org.apache.kafka.streams.kstream.internals.KTableFilter$KTableFilterProcessor.process(KTableFilter.java:79)
at org.apache.kafka.streams.kstream.internals.KTableFilter$KTableFilterProcessor.process(KTableFilter.java:63)
at org.apache.kafka.streams.processor.internals.ProcessorNode$1.run(ProcessorNode.java:50)
at org.apache.kafka.streams.processor.internals.ProcessorNode.runAndMeasureLatency(ProcessorNode.java:244)
at org.apache.kafka.streams.processor.internals.ProcessorNode.process(ProcessorNode.java:133)
at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:143)
at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:126)
at org.apache.kafka.streams.processor.internals.ProcessorContextImpl.forward(ProcessorContextImpl.java:90)
at org.apache.kafka.streams.kstream.internals.ForwardingCacheFlushListener.apply(ForwardingCacheFlushListener.java:42)
at org.apache.kafka.streams.state.internals.CachingKeyValueStore.putAndMaybeForward(CachingKeyValueStore.java:101)
at org.apache.kafka.streams.state.internals.CachingKeyValueStore.access$000(CachingKeyValueStore.java:38)
at org.apache.kafka.streams.state.internals.CachingKeyValueStore$1.apply(CachingKeyValueStore.java:83)
at org.apache.kafka.streams.state.internals.NamedCache.flush(NamedCache.java:141)
at org.apache.kafka.streams.state.internals.NamedCache.flush(NamedCache.java:99)
at org.apache.kafka.streams.state.internals.ThreadCache.flush(ThreadCache.java:125)
at org.apache.kafka.streams.state.internals.CachingKeyValueStore.flush(CachingKeyValueStore.java:123)
at org.apache.kafka.streams.state.internals.InnerMeteredKeyValueStore.flush(InnerMeteredKeyValueStore.java:284)
at org.apache.kafka.streams.state.internals.MeteredKeyValueBytesStore.flush(MeteredKeyValueBytesStore.java:149)
at org.apache.kafka.streams.processor.internals.ProcessorStateManager.flush(ProcessorStateManager.java:239)
... 12 more`

2 个答案:

答案 0 :(得分:0)

我能够如下创建物化视图:

application.yml中的配置

spring.cloud.stream.kafka.streams.bindings.input:
  consumer:
    materializedAs: all-messages
    keySerde: org.apache.kafka.common.serialization.Serdes$StringSerde
    valueSerde: com.me.MyMessageSerde
  producer:
    keySerde: org.apache.kafka.common.serialization.Serdes$StringSerde
    valueSerde: com.me.MyMessageSerde`  

这将设置正确的序列化程序和实体化视图。

以下代码创建了KTable,该KTable使用上述配置实现了视图。

public void process(@Input("input") KTable<String,MyMessage> myMessages) {
}

答案 1 :(得分:0)

不容易地支持所需的查询类型。请注意,没有二级索引,但仅支持基于键的常规查找和范围。

如果您预先了解所有查询,则可以将数据重新分组为以查询属性为键的派生KTables。请注意,键必须是唯一的,因此,如果查询属性包含非唯一数据,则需要使用某些Collection类型作为值:

KTable originalTable = builder.table(...)
KTable keyedByFieldATable = originalTable.groupBy(/*select field A*/).aggregate(/* the aggregation return a list or similar of entries for the key*/);

请注意,每次重新键入原始表时,您都会重复存储要求。

或者,您可以对原始表进行全表扫描,并在使用返回的迭代器时评估过滤条件。

这是空间与CPU之间的权衡。也许Kafka Streams不是解决您问题的正确工具。