如何将具有多个数据输出的keras用于训练然后进行预测?

时间:2019-07-02 04:15:17

标签: python keras

我需要用python编写ANN的代码。目前,我的代码适用于说三组输入x1,x2,x3和输出y。但是现在我需要为输入x1,x2,x3和输出y1,y2编写。然后在训练后,需要预测给定的输入。

我的训练数据文本文件为('HittingCoordinate.txt'):

48.024  61.8892 10.8376 0.400017    0.224192    0.4377888
39.2821 78.4852 10.806  0.400006    0.158922    0.4786495
42.3608 55.6263 14.7301 0.400102    0.190636    0.348763

我在互联网上进行搜索,发现它主要处理图像处理,这对我的情况没有帮助。

我的代码是

seed = 7
np.random.seed(seed)
data = np.loadtxt('HittingCoordinate.txt', dtype = float)

X = data[:,0:3]
Y = (data[:,5][np.newaxis]).T

# scale units
X = X/np.amax(X, axis=0) # maximum of X array
data = np.loadtxt('Input_test.txt', dtype = float)

xPredicted_test = data[:,0:3]
xPredicted_test = xPredicted_test/np.amax(xPredicted_test, axis=0)


data = np.loadtxt('Input.txt', dtype = float)

xPredicted = data[:,0:3]
xPredicted = xPredicted/np.amax(xPredicted, axis=0)

# create model
model = Sequential()
model.add(Dense(15, input_dim=3, init='uniform', activation='sigmoid'))
model.add(Dense(10, init='uniform', activation='relu'))
model.add(Dense(5, init='uniform', activation='relu'))
model.add(Dense(3, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
adam = tf.train.AdamOptimizer(learning_rate=0.1) # the optimizer
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=500, batch_size=50,  verbose=2)
# calculate predictions
predictions = model.predict(X)
#scores = model.evaluate(X, Y, verbose=1)
scores = model.evaluate(X, Y)
predictions_new_test = model.predict(xPredicted_test)
predictions_new = model.predict(xPredicted)
accuracy = (predictions_new_test-Y)*100/Y
print((accuracy))
np.savetxt("Prediction_keras.txt", (predictions_new))

这是代码,可以处理一个输出。如何修改此代码以处理多个输出?

我将非常感谢您知道解决方案。谢谢。

0 个答案:

没有答案