如何使用Azure语音转文本和Python SDK获取单词级时间戳?

时间:2019-07-01 20:58:27

标签: python azure speech-to-text

在我在GitHub上找到的示例的帮助下,我的代码当前能够读取音频文件并使用Azure Speech to Text进行转录。但是,我需要在转录中包括所有单词的时间戳。根据文档,此功能已在1.5.0版中添加,可以通过request_word_level_timestamps()方法进行访问。但是即使我已经打电话给我,我也会得到与以前相同的答复。我无法从文档中弄清楚如何使用它。有谁知道它是如何工作的?

我正在使用Python SDK 1.5.1版。

import azure.cognitiveservices.speech as speechsdk
import time
from allennlp.predictors.predictor import Predictor
import json 

inputPath = "(inputlocation)"
outputPath = "(outputlocation)"

# Creates an instance of a speech config with specified subscription     key and service region.
# Replace with your own subscription key and service region (e.g., "westus").
speech_key, service_region = "apikey", "region"
speech_config = speechsdk.SpeechConfig(subscription=speech_key,     region=service_region)
speech_config.request_word_level_timestamps()
speech_config.output_format=speechsdk.OutputFormat.Detailed
#print("VALUE: " +     speech_config.get_property(property_id=speechsdk.PropertyId.SpeechServic    eResponse_RequestWordLevelTimestamps))
filename = input("Enter filename: ")

print(speech_config)

try:
    audio_config = speechsdk.audio.AudioConfig(filename= inputPath +     filename)

    # Creates a recognizer with the given settings
    speech_recognizer =     speechsdk.SpeechRecognizer(speech_config=speech_config,     audio_config=audio_config)


def start():
    done = False
    #output = ""
    fileOpened = open(outputPath+ filename[0: len(filename) - 4] + "_MS_recognized.txt", "w+")
    fileOpened.truncate(0)
    fileOpened.close()

    def stop_callback(evt):
        print("Closing on {}".format(evt))
        speech_recognizer.stop_continuous_recognition()
        nonlocal done
        done = True

    def add_to_res(evt):
        #nonlocal output
        #print("Recognized: {}".format(evt.result.text))
        #output = output + evt.result.text + "\n"
        fileOpened = open( outputPath + filename[0: len(filename) - 4] + "_MS_recognized.txt", "a")
        fileOpened.write(evt.result.text + "\n")
        fileOpened.close()
        #print(output)

    # Connect callbacks to the events fired by the speech recognizer
    speech_recognizer.recognizing.connect(lambda evt: print('RECOGNIZING: {}'.format(evt)))
    speech_recognizer.recognized.connect(lambda evt: print('RECOGNIZED: {}'.format(evt)))
    speech_recognizer.recognized.connect(add_to_res)
    speech_recognizer.session_started.connect(lambda evt: print('SESSION STARTED: {}'.format(evt)))
    speech_recognizer.session_stopped.connect(lambda evt: print('SESSION STOPPED {}'.format(evt)))
    speech_recognizer.canceled.connect(lambda evt: print('CANCELED {}'.format(evt)))
    # stop continuous recognition on either session stopped or canceled events
    speech_recognizer.session_stopped.connect(stop_callback)
    speech_recognizer.canceled.connect(stop_callback)

    # Start continuous speech recognition
    speech_recognizer.start_continuous_recognition()
    while not done:
        time.sleep(.5)
    # </SpeechContinuousRecognitionWithFile>


    # Starts speech recognition, and returns after a single utterance is recognized. The end of a
    # single utterance is determined by listening for silence at the end or until a maximum of 15
    # seconds of audio is processed.  The task returns the recognition text as result. 
    # Note: Since recognize_once() returns only a single utterance, it is suitable only for single
    # shot recognition like command or query. 
    # For long-running multi-utterance recognition, use start_continuous_recognition() instead.

start()

except Exception as e: 
    print("File does not exist")
    #print(e)

结果仅包含session_id和一个结果对象,其中包括result_id,文本和原因。

3 个答案:

答案 0 :(得分:4)

在评论它如何有助于连续识别时,如果将SpeechConfig设置为request_word_level_timestamps(),则可以将其作为连续识别来运行。您可以使用evt.result.json检查json结果。

例如,

speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
speech_config.request_word_level_timestamps()

然后是您的语音识别器:

speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)

将回调连接到speech_recognizer触发的事件时,您可以看到带有以下字词的时间戳:

speech_recognizer.recognized.connect(lambda evt: print('JSON: {}'.format(evt.result.json)))

我的问题是Translation对象不包含单词级别,因为它不接受speech_config

答案 1 :(得分:1)

设置

speech_config.request_word_level_timestamps()

在azure sdk的语音配置中,您可以获取每个单词的成绩单和时间戳。

speech_config.output_format = speechsdk.OutputFormat(1)

此语句将允许您从azure sdk获取详细的json对象。

下面是示例代码。确保更换钥匙。在与文字的语音交流可能失败的地方,可能需要一些错误处理。

def process(self):
    logger.debug("Speech to text request received")

    speechapi_settings =  SpeechAPIConf()
    audio_filepath = <PATH_TO_AUDIO_FILE>
    locale = "en-US" # Change as per requirement

    logger.debug(audio_filepath)
    audio_config = speechsdk.audio.AudioConfig(filename=audio_filepath) 
    speech_config = speechsdk.SpeechConfig(subscription=<SUBSCRIPTION_KEY>, region=<SERVICE_REGION>)
    speech_config.request_word_level_timestamps()
    speech_config.speech_recognition_language = locale
    speech_config.output_format = speechsdk.OutputFormat(1)


    # Creates a recognizer with the given settings
    speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)

    # Variable to monitor status
    done = False

    # Service callback for recognition text 
    transcript_display_list = []
    transcript_ITN_list = []
    confidence_list = []
    words = []
    def parse_azure_result(evt):
        import json
        response = json.loads(evt.result.json)
        transcript_display_list.append(response['DisplayText'])
        confidence_list_temp = [item.get('Confidence') for item in response['NBest']]
        max_confidence_index = confidence_list_temp.index(max(confidence_list_temp))
        confidence_list.append(response['NBest'][max_confidence_index]['Confidence'])
        transcript_ITN_list.append(response['NBest'][max_confidence_index]['ITN'])
        words.extend(response['NBest'][max_confidence_index]['Words'])
        logger.debug(evt)

    # Service callback that stops continuous recognition upon receiving an event `evt`
    def stop_cb(evt):
        print('CLOSING on {}'.format(evt))
        speech_recognizer.stop_continuous_recognition()
        nonlocal done
        done = True

        # Do something with the combined responses
        print(transcript_display_list)
        print(confidence_list)
        print(words)


    # Connect callbacks to the events fired by the speech recognizer
    speech_recognizer.recognizing.connect(lambda evt: logger.debug('RECOGNIZING: {}'.format(evt)))
    speech_recognizer.recognized.connect(parse_azure_result)
    speech_recognizer.session_started.connect(lambda evt: logger.debug('SESSION STARTED: {}'.format(evt)))
    speech_recognizer.session_stopped.connect(lambda evt: logger.debug('SESSION STOPPED {}'.format(evt)))
    speech_recognizer.canceled.connect(lambda evt: logger.debug('CANCELED {}'.format(evt)))
    # stop continuous recognition on either session stopped or canceled events
    speech_recognizer.session_stopped.connect(stop_cb)
    speech_recognizer.canceled.connect(stop_cb)

    # Start continuous speech recognition
    logger.debug("Initiating speech to text")
    speech_recognizer.start_continuous_recognition()
    while not done:
        time.sleep(.5)

答案 2 :(得分:0)

我参考了您的代码,并按照官方教程Quickstart: Recognize speech with the Speech SDK for Python编写了以下示例代码,该代码可以为每个单词打印OffsetDuration值。我使用了一个名为whatstheweatherlike.wav的音频文件,该文件来自GitHub Repo Azure-Samples/cognitive-services-speech-sdk的{​​{3}}。

这是我的示例代码及其结果。

import azure.cognitiveservices.speech as speechsdk

speech_key, service_region = "<your api key>", "<your region>"
speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
speech_config.request_word_level_timestamps()

audio_config = speechsdk.audio.AudioConfig(filename='whatstheweatherlike.wav')
speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_config)
result = speech_recognizer.recognize_once()

# print(result.json)
# If without `request_word_level_timestamps`, the result:
# {"DisplayText":"What's the weather like?","Duration":13400000,"Offset":400000,"RecognitionStatus":"Success"}
# Enable `request_word_level_timestamps`, the result includes word level timestamps.
# {"Duration":13400000,"NBest":[{"Confidence":0.9761951565742493,"Display":"What's the weather like?","ITN":"What's the weather like","Lexical":"what's the weather like","MaskedITN":"What's the weather like","Words":[{"Duration":3800000,"Offset":600000,"Word":"what's"},{"Duration":1200000,"Offset":4500000,"Word":"the"},{"Duration":2900000,"Offset":5800000,"Word":"weather"},{"Duration":4700000,"Offset":8800000,"Word":"like"}]},{"Confidence":0.9245584011077881,"Display":"what is the weather like","ITN":"what is the weather like","Lexical":"what is the weather like","MaskedITN":"what is the weather like","Words":[{"Duration":2900000,"Offset":600000,"Word":"what"},{"Duration":700000,"Offset":3600000,"Word":"is"},{"Duration":1300000,"Offset":4400000,"Word":"the"},{"Duration":2900000,"Offset":5800000,"Word":"weather"},{"Duration":4700000,"Offset":8800000,"Word":"like"}]}],"Offset":400000,"RecognitionStatus":"Success"}

import json
stt = json.loads(result.json)
confidences_in_nbest = [item['Confidence'] for item in stt['NBest']]
best_index = confidences_in_nbest.index(max(confidences_in_nbest))
words = stt['NBest'][best_index]['Words']
print(words)

print(f"Word\tOffset\tDuration")
for word in words:
    print(f"{word['Word']}\t{word['Offset']}\t{word['Duration']}")

上面的脚本的输出是:

[{'Duration': 3800000, 'Offset': 600000, 'Word': "what's"}, {'Duration': 1200000, 'Offset': 4500000, 'Word': 'the'}, {'Duration': 2900000, 'Offset': 5800000, 'Word': 'weather'}, {'Duration': 4700000, 'Offset': 8800000, 'Word': 'like'}]
Word    Offset  Duration
what's  600000  3800000
the     4500000 1200000
weather 5800000 2900000
like    8800000 4700000

希望有帮助。