出于本MWE的目的,我尝试使用具有多个项的自定义损失函数来拟合线性回归。但是,在尝试通过用损失乘以权重向量来加权损失函数中的不同项时,我遇到了奇怪的行为。仅将损失相加即可达到预期效果;但是,当权重和损失点均出现时,反向传播会以某种方式破坏,并且损失函数不会减少。
我尝试在两个张量上启用和禁用require_grad,但是无法复制预期的行为。
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Hyper-parameters
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001
# Toy dataset
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
# Linear regression model
model = nn.Linear(input_size, output_size)
# Loss and optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
def loss_fn(outputs, targets):
l1loss = torch.norm(outputs - targets, 1)
l2loss = torch.norm(outputs - targets, 2)
# This works as expected
# loss = 1 * l1loss + 1 * l2loss
# Loss never changes, no matter what combination of
# requires_grad I set
loss = torch.dot(torch.tensor([1.0, 1.0], requires_grad=False),
torch.tensor([l1loss, l2loss], requires_grad=True))
return loss
# Train the model
for epoch in range(num_epochs):
# Convert numpy arrays to torch tensors
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
# Forward pass
outputs = model(inputs)
loss = loss_fn(outputs, targets)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 5 == 0:
print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# Plot the graph
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()
预期结果:损失函数减小,并且线性回归拟合(请参见下面的输出)
Epoch [5/60], Loss: 7.9943
Epoch [10/60], Loss: 7.7597
Epoch [15/60], Loss: 7.6619
Epoch [20/60], Loss: 7.6102
Epoch [25/60], Loss: 7.4971
Epoch [30/60], Loss: 7.4106
Epoch [35/60], Loss: 7.3942
Epoch [40/60], Loss: 7.2438
Epoch [45/60], Loss: 7.2322
Epoch [50/60], Loss: 7.1012
Epoch [55/60], Loss: 7.0701
Epoch [60/60], Loss: 6.9612
实际结果:损失函数没有变化
Epoch [5/60], Loss: 73.7473
Epoch [10/60], Loss: 73.7473
Epoch [15/60], Loss: 73.7473
Epoch [20/60], Loss: 73.7473
Epoch [25/60], Loss: 73.7473
Epoch [30/60], Loss: 73.7473
Epoch [35/60], Loss: 73.7473
Epoch [40/60], Loss: 73.7473
Epoch [45/60], Loss: 73.7473
Epoch [50/60], Loss: 73.7473
Epoch [55/60], Loss: 73.7473
Epoch [60/60], Loss: 73.7473
我对为什么这样一个简单的操作打破了反向传播梯度感到困惑,如果有人对为什么这种方法不起作用有任何见解,我将不胜感激。
答案 0 :(得分:0)
使用torch.cat((loss1, loss2))
,您是根据现有的破坏图表的张量创建新的Tensor。
无论如何,除非您试图概括损失函数,否则您不应该这样做,这是非常难以理解的。简单添加会更好。