我正在运行K均值聚类模型,我想分析聚类质心,但是中心输出是我的20个质心的LIST,其坐标(每个8个)为ARRAY。我需要它作为一个数据帧,将簇1:20作为行,并将它们的属性值(质心坐标)作为列,如下所示:
c1 | 0.85 | 0.03 | 0.01 | 0.00 | 0.12 | 0.01 | 0.00 | 0.12
c2 | 0.25 | 0.80 | 0.10 | 0.00 | 0.12 | 0.01 | 0.00 | 0.77
c3 | 0.05 | 0.10 | 0.00 | 0.82 | 0.00 | 0.00 | 0.22 | 0.00
数据帧格式很重要,因为我想做的是:
对于每个质心 确定3个最强属性 为20个质心中的每个质心创建一个“名称”,该名称是该质心中3个最主要特征的串联
例如:
c1 | milk_eggs_cheese
c2 | meat_milk_bread
c3 | toiletries_bread_eggs
此代码在Zeppelin,EMR版本5.19,Spark2.4中运行。该模型很好用,但这是Spark文档(https://spark.apache.org/docs/latest/ml-clustering.html#k-means)中的样板代码,它产生了我无法真正使用的数组输出列表。
centers = model.clusterCenters()
print("Cluster Centers: ")
for center in centers:
print(center)
这是我得到的输出的摘录。
Cluster Centers:
[0.12391775 0.04282062 0.00368751 0.27282358 0.00533401 0.03389095
0.04220946 0.03213536 0.00895981 0.00990327 0.01007891]
[0.09018751 0.01354349 0.0130329 0.00772877 0.00371508 0.02288211
0.032301 0.37979978 0.002487 0.00617438 0.00610262]
[7.37626746e-02 2.02469798e-03 4.00944473e-04 9.62304581e-04
5.98964859e-03 2.95190585e-03 8.48736175e-01 1.36797882e-03
2.57451073e-04 6.13320072e-04 5.70559278e-04]
基于How to convert a list of array to Spark dataframe,我已经尝试过:
df = sc.parallelize(centers).toDF(['fresh_items', 'wine_liquor', 'baby', 'cigarettes', 'fresh_meat', 'fruit_vegetables', 'bakery', 'toiletries', 'pets', 'coffee', 'cheese'])
df.show()
但这会引发以下错误:
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
答案 0 :(得分:0)
model.clusterCenters()
为您提供了一个numpy数组列表,而不是像您已链接的答案中的列表列表。只需在创建数据框之前将numpy数组转换为列表即可:
bla = [e.tolist() for e in centers]
df = sc.parallelize(bla).toDF(['fresh_items', 'wine_liquor', 'baby', 'cigarettes', 'fresh_meat', 'fruit_vegetables', 'bakery', 'toiletries', 'pets', 'coffee', 'cheese'])
#or df = spark.createDataFrame(bla, ['fresh_items', 'wine_liquor', 'baby', 'cigarettes', 'fresh_meat', 'fruit_vegetables', 'bakery', 'toiletries', 'pets', 'coffee', 'cheese']
df.show()