我用Tensorflow BERT语言模型创建了一个二进制分类器。这是link的示例代码。我能够做预测。现在,我要导出此模型。我不确定我是否正确定义了feature_spec。
要导出模型的代码。
feature_spec = {'x': tf.VarLenFeature(tf.string)}
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[1],name='input_example_tensor')
receiver_tensors = {'examples': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
# Export the estimator
export_path = f'/content/drive/My Drive/binary_class/bert/export'
estimator.export_saved_model(
export_path,
serving_input_receiver_fn=serving_input_receiver_fn)
错误
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-71-56ff3fb3e002> in <module>()
16 estimator.export_saved_model(
17 export_path,
---> 18 serving_input_receiver_fn=serving_input_receiver_fn)
4 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in export_saved_model(self, export_dir_base, serving_input_receiver_fn, assets_extra, as_text, checkpoint_path, experimental_mode)
730 as_text=as_text,
731 checkpoint_path=checkpoint_path,
--> 732 strip_default_attrs=True)
733
734 def experimental_export_all_saved_models(
/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _export_all_saved_models(self, export_dir_base, input_receiver_fn_map, assets_extra, as_text, checkpoint_path, strip_default_attrs)
854 builder, input_receiver_fn_map, checkpoint_path,
855 save_variables, mode=ModeKeys.PREDICT,
--> 856 strip_default_attrs=strip_default_attrs)
857 save_variables = False
858
/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _add_meta_graph_for_mode(self, builder, input_receiver_fn_map, checkpoint_path, save_variables, mode, export_tags, check_variables, strip_default_attrs)
927 labels=getattr(input_receiver, 'labels', None),
928 mode=mode,
--> 929 config=self.config)
930
931 export_outputs = export_lib.export_outputs_for_mode(
/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _call_model_fn(self, features, labels, mode, config)
1144
1145 logging.info('Calling model_fn.')
-> 1146 model_fn_results = self._model_fn(features=features, **kwargs)
1147 logging.info('Done calling model_fn.')
1148
<ipython-input-17-119a3167bf33> in model_fn(features, labels, mode, params)
5 """The `model_fn` for TPUEstimator."""
6
----> 7 input_ids = features["input_ids"]
8 input_mask = features["input_mask"]
9 segment_ids = features["segment_ids"]
KeyError: 'input_ids'
答案 0 :(得分:0)
笔记本中存在的create_model函数带有一些参数。这些就是将传递给模型的功能。
通过将serving_input_fn函数更新为以下内容,该serving函数可以正常工作。
更新代码
def serving_input_fn():
feature_spec = {
"input_ids" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"input_mask" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"segment_ids" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"label_ids" : tf.FixedLenFeature([], tf.int64)
}
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[None],
name='input_example_tensor')
receiver_tensors = {'example': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)