我有这段代码,该代码用beautifulsoup4刮开了Hacker News网站,我正在寻找一种使用Pandas将结果保存到Dataframe中的方法。我已经在下面的代码中导入了熊猫,但是我不知道如何将结果保存到DataFrame中。它只是现在只刮取了最受欢迎的Hacker News帖子,但是可以更改。
import pandas as pd
from requests import get
from requests.exceptions import RequestException
from contextlib import closing
from bs4 import BeautifulSoup
from math import ceil
import json, sys, argparse, validators
MAX_NUM_POSTS = 100
class HackerNewsScraper:
URL = 'https://news.ycombinator.com/news'
def __init__(self, posts):
self._total_posts = posts
self._total_pages = int(ceil(posts/30))
self._stories = []
def scrape_stories(self):
"""
Fetches all HTML data.
Each page is limited to 30 stories, this function will ensure enough pages are fetched.
"""
page = 1
while(page <= self._total_pages): # Makes sure to visit sufficient amount of pages
url = '{}?p={}'.format(self.URL, page)
html = get_html(url)
self.parse_stories(html)
page += 1
def parse_stories(self, html):
"""
Given a BeautifulSoup nested data structure, html. parse_stories(html) will parse the data and select the desired fields.
After getting title, uri, author, comments, points, and rank, it will save them in dictionary form in self._stories.
"""
for storytext, subtext in zip(html.find_all('tr', {'class': 'athing'}),
html.find_all('td', {'class': 'subtext'})):
storylink = storytext.find_all('a',{'class':'storylink'})
sublink = subtext.select('a')
# All requested data being saved in the dictionary story below
TITLE = storylink[0].text.strip()
LINK = storylink[0]['href']
AUTHOR = sublink[0].text
COMMENTS = sublink[-1].text
POINTS = subtext.select('span')[0].text
RANK = storytext.select('span.rank')[0].text.strip('.')
story = {
'title' : TITLE,
'uri' : LINK,
'author' : AUTHOR,
'points' : POINTS,
'comments' : COMMENTS,
'rank' : RANK
}
# Make sure data satisfies requirements
story = validate_story(story)
# self._stories is an array of dictionaries that saves the requested number of stories
self._stories.append(story)
# If required number of stories met, stop parsing
if len(self._stories) >= self._total_posts:
return
def print_stories(self):
"""
Outputs the stories from list of dictionary format to JSON in STDOUT.
"""
json.dump(self._stories, sys.stdout, indent=4)
def get_stories(self):
"""
Returns the scraped stories to the user in a list of dictionary format.
Used for testing purposes.
"""
return self._stories
def get_html(url):
"""
Runs the HTML data through BeautifulSoup to get a BeautifulSoup object, a nested data structure.
"""
response = get_response(url)
if response is not None:
html = BeautifulSoup(response, 'html.parser')
return html
def validate_story(story):
"""
Ensures that all the story data is valid according to the task.
Will return valid data for each field.
"""
story['title'] = story['title'][:256]
if not valid_title(story['title']):
story['title'] = 'Valid title not found'
story['author'] = story['author'][:256]
if not valid_author(story['author']):
story['author'] = 'Valid author not found'
if not valid_uri(story['uri']):
story['uri'] = 'Valid URI not found'
story['comments'] = validate_number(story['comments'])
story['points'] = validate_number(story['points'])
story['rank'] = validate_number(story['rank'])
return story
def valid_title(title):
"""
Ensures that title is non empty string with <= 256 characters
"""
return (len(title) <= 256 and title)
def valid_author(author):
"""
Ensures that author is non empty string and <= 256 characters.
Solved the issue of not finding an author by checking the fetched data with HN username rules.
"""
if(author.find(' ') > -1): #Hacker news username doesnt support whitespace
return False
return (len(author) <= 256 and author)
def valid_uri(url):
"""
To be able to find the scraped stories, we need their URL.
If data is not a valid URL, return False.
"""
if(validators.url(url)):
return True
return False
def validate_number(numString):
"""
Will make sure that the returned number is an integer.
Will strip any non digits from the input and return the first number.
"""
if numString.find('ago') > -1: #If not found, 'time since posted' would replace points for example
return 0
digits = [int(s) for s in numString.split() if s.isdigit()]
if len(digits) > 0:
return digits[0]
return 0
def get_response(url):
"""
Attempts to get the content at 'url' by making an HTTP GET request.
If the content-type of response is some kind of HTML/XML, return the
text content, otherwise return None.
"""
try:
with closing(get(url, stream=True)) as resp:
if is_good_response(resp):
return resp.content
else:
return None
except RequestException as e:
log_error('Error during requests to {0} : {1}'.format(url, str(e)))
return None
def is_good_response(resp):
"""
Returns True if the response seems to be HTML, False otherwise.
"""
content_type = resp.headers['Content-Type'].lower()
return (resp.status_code == 200
and content_type is not None
and content_type.find('html') > -1)
def log_error(e):
"""
Log the errors. Currently just printing them out to user.
"""
print(e)
def validate_input(arg, arg_max):
"""
Validate the user input. Makes sure it is less than or equal to 100 posts.
"""
error_msg = 'Posts cannot exceed {}'.format(arg_max)
if arg > arg_max:
raise argparse.ArgumentTypeError(error_msg)
# Parses the number of posts input from user. Default is 10.
def parse_arguments():
"""
Parses the argument input from the user. Default is 10.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--posts', '-p', metavar='n', type=int, default=1, help='number of posts (max 100)')
args = parser.parse_args()
validate_input(args.posts, MAX_NUM_POSTS)
return args.posts
def main():
"""
If user input is valid, will create a scraper and fetch requests number of posts and print them to the user.
"""
try:
posts = parse_arguments()
hnews_scraper = HackerNewsScraper(posts)
hnews_scraper.scrape_stories()
hnews_scraper.print_stories()
except argparse.ArgumentTypeError as ex:
log_error(ex)
if __name__ == '__main__':
main()
答案 0 :(得分:0)
尝试一下:
别忘了导入 Pandas
story = {
'title' : TITLE,
'uri' : LINK,
'author' : AUTHOR,
'points' : POINTS,
'comments' : COMMENTS,
'rank' : RANK
}
data = list(zip(TITLE, LINK, AUTHOR, POINTS, COMMENTS, RANK))
dt = pd.DataFrame(data, columns = ['title', 'uri', 'author', 'points', 'comments', 'rank'])