我有这个有效的代码,它实际上有效,基本上它的作用是 借助于node.js将模型cocossd加载到tensorflow中,并对其进行预测。
但是我想做的是使用我自己的类和标签重新训练该模型。
所有这些都使用node.js。我怎样才能做到这一点?我已经有2周的时间,但没有在搜索中找到结果。请帮忙。
const tf = require('@tensorflow/tfjs')
const mn = require('@tensorflow-models/mobilenet');
const ccsd = require('@tensorflow-models/coco-ssd');
require('@tensorflow/tfjs-node')
const fs = require('fs');
const jpeg = require('jpeg-js');
const COCOSSD_PATH = 'model/mobilenet_v2/model.json';
const IMAGE_PATH = 'panda.jpg';
const NUMBER_OF_CHANNELS = 3;
//LOAD DE MODEL
const loadModel = async path => {
const model = new ccsd.ObjectDetection();
model.modelPath = `file://${path}`;
await model.load();
return model;
}
//TRANSFORMA LA IMAGEN EN rgba VALUES
const readImage = path => {
const buf = fs.readFileSync(path)
const pixels = jpeg.decode(buf, true)
return pixels
}
//CONVERT THE IMAGE FROM rgba VALUES TO rgb VALUES
const imageByteArray = (image, numChannels) => {
const pixels = image.data
const numPixels = image.width * image.height;
const values = new Int32Array(numPixels * numChannels);
for (let i = 0; i < numPixels; i++) {
for (let channel = 0; channel < numChannels; ++channel) {
values[i * numChannels + channel] = pixels[i * 4 + channel];
}
}
return values
}
//CONVERT THE IMAGE TO A TENSOR
const imageToInput = (image, numChannels) => {
const values = imageByteArray(image, numChannels)
const outShape = [image.height, image.width, numChannels];
const input = tf.tensor3d(values, outShape, 'int32');
return input
}
//EVERY THING START HERE AND ENDS HERE
const inic = async (cocossdPath, imagePath) => {
const image = readImage(imagePath)
const input = imageToInput(image, NUMBER_OF_CHANNELS);
const cocossd = await loadModel(cocossdPath);
const detection = await cocossd.detect(input);
console.log('classification results: ', detection);
}
inic(COCOSSD_PATH,IMAGE_PATH)