我需要转换多列数据框中的数据,并想找到一种方法可以一次对数据框的所有列进行转换。数值数据的数据转换似乎没有问题。例如:
df <- data.frame(
co1 = c(5,9,6,1,6),
co2 = c(8,5,4,6,2),
co3 = c(6,5,4,1,2),
co4 = c(6,1,5,3,2),
co5 = c(5,1,2,6,8))
我可以使用for循环一次转换所有数据(例如,将所有大于5的值标记为“是”,将所有其他值标记为“否”):
for(i in 1:ncol(df)){
df[i] <- ifelse(df[i] > 5, "yes", "no")
}
或更简单地说,使用索引:
df[] <- ifelse(df > 5, "yes", "no")
但是,当我有字符数据时,这些方法不起作用。例如,我想将此数据帧中所有以“ A”开头的值转换为“是”:
df <- data.frame(
co1 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")),
co2 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")),
co3 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")),
co4 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")),
co5 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")))
df
co1 co2 co3 co4 co5
1 JF GB ID EB DF
2 IA DD DA IF HD
3 HI IH JE CH FB
4 GE JI CJ BA GE
5 BG EE GG AJ BH
for循环
for(i in 1:ncol(df)){
df[i] <- ifelse(grepl("^B", df[i]), "yes", "no")
}
以及通过索引的变形会产生相同的错误变换:
df[] <- ifelse(grepl("^B", df), "yes", "no")
df
co1 co2 co3 co4 co5
1 no no no no no
2 no no no no no
3 no no no no no
4 no no no no no
5 no no no no no
任何帮助如何使用字符数据实现正确的转换?
答案 0 :(得分:3)
有了dplyr
,我们可以做到:
df %>%
mutate_all(function(x) ifelse(grepl("^B",x),"Yes","No"))
co1 co2 co3 co4 co5
1 Yes No Yes No No
2 No No No No No
3 No No No No No
4 No No No No No
5 No No No No Yes
关于帖子(df1)中的数据:
df1 %>%
mutate_all(function(x) ifelse(grepl("^B",x),"Yes","No"))
co1 co2 co3 co4 co5
1 No No No No No
2 No No No No No
3 No No No No No
4 No No No Yes No
5 Yes No No No Yes
数据:
df
co1 co2 co3 co4 co5
1 BH IC BC HJ CC
2 CC DH CF GI HI
3 DB GE JI DA GD
4 II CA EJ IG FA
5 JD JB IG EB BE
答案 1 :(得分:3)
如果您想坚持以R为底,rules_version = '2';
可以在这里工作:
rules_version = '2';
service cloud.firestore {
match /databases/{database}/documents {
// Matches any document in the cities collection as well as any document
// in a subcollection.
match /cities/{city}/{document=**} {
allow read, write: if <condition>;
}
}
}
答案 2 :(得分:3)
我们可以unlist
数据,然后直接在带有索引的基数R中使用grepl
df[] <- c("No", "Yes")[grepl("^B", unlist(df)) + 1]
df
# co1 co2 co3 co4 co5
#1 No No No No No
#2 No Yes No No No
#3 No No No Yes No
#4 No No No No No
#5 No No No No Yes
数据
set.seed(12345)
df <- data.frame(
co1 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")),
co2 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")),
co3 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")),
co4 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")),
co5 = c(paste(sample(LETTERS[1:10],5), sample(LETTERS[1:10],5), sep = "")))
df
# co1 co2 co3 co4 co5
#1 HB AE ED HD HD
#2 JC BD CG AH DA
#3 GE FI HE BI JI
#4 IF JB JB EE FH
#5 CG CF DC CA BJ
答案 3 :(得分:2)
base R
中带有substr
的选项
out <- array("No", dim = dim(df), dimnames = dimnames(df))
out[substr(as.matrix(df), 1, 1) == "B"] <- "Yes"
df <- structure(list(co1 = structure(c(2L, 4L, 1L, 3L, 5L), .Label = c("BF",
"CH", "EC", "HB", "JJ"), class = "factor"), co2 = structure(c(3L,
1L, 4L, 5L, 2L), .Label = c("AD", "FI", "GA", "HH", "JB"), class = "factor"),
co3 = structure(c(1L, 5L, 4L, 3L, 2L), .Label = c("CJ", "DB",
"EF", "FH", "IG"), class = "factor"), co4 = structure(c(2L,
4L, 3L, 1L, 5L), .Label = c("AE", "DH", "HA", "IF", "JC"), class = "factor"),
co5 = structure(c(1L, 5L, 3L, 2L, 4L), .Label = c("AC", "BG",
"EE", "GI", "JJ"), class = "factor")),
class = "data.frame", row.names = c(NA,
-5L))