无法将pyTorch模型转换为ONNX

时间:2019-06-28 18:53:35

标签: python deep-learning pytorch onnx

我想将pyTorch模型转换为ONNX。但是,我得到一个错误,说

  

RuntimeError:提供的输入名称数量(9)超出了输入数量(7)   但是,如果我从模型中删除两个Dropout层,我的代码将运行完美。

这是为什么?

这是我的代码:

# Define the model
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Dropout(0.2),  # problem with dropout layer
    torch.nn.Linear(H, H),
    torch.nn.LeakyReLU(),
    torch.nn.Dropout(0.2),  # problem with dropout layer
    torch.nn.Linear(H, D_out),
    torch.nn.Sigmoid()
)
checkpoint = torch.load("./saved_pytorch_model.pth")  # load pyTorch model
model.load_state_dict(checkpoint['state_dict'])
features = torch.Tensor(df_X.values[0])
# Convert pyTorch model to ONNX
input_names = ['input_1']
output_names = ['output_1']
for key, module in model._modules.items():
    input_names.append("l_{}_".format(key) + module._get_name())
torch_out = torch.onnx.export(model, 
                         features, 
                         "onnx_model.onnx", 
                         export_params = True, 
                         verbose = True, 
                         input_names = input_names, 
                         output_names = output_names,
                        )

我该怎么做才能将其导出到包含Dropout的ONNX?

1 个答案:

答案 0 :(得分:0)

对我来说,这似乎是个错误。 您可以注释掉输入名称参数。

# Convert pyTorch model to ONNX
input_names = ['input_1']
output_names = ['output_1']
for key, module in model._modules.items():
    input_names.append("l_{}_".format(key) + module._get_name())
torch_out = torch.onnx.export(model, 
                         features, 
                         "onnx_model.onnx", 
                         export_params = True, 
                         verbose = True, 
                         #input_names = input_names, 
                         output_names = output_names,
                        )

您将获得带有%的输入名称,如下所示:

graph(%input.1 : Float(10, 3, 224, 10)
      %1 : Float(10, 10)
      %2 : Float(10)
      %3 : Float(10, 10)
      %4 : Float(10)
      %5 : Float(10, 10)
      %6 : Float(10)) {
  %7 : Float(10!, 10!) = onnx::Transpose[perm=[1, 0]](%1), scope: Sequential/Linear[0]
  %8 : Float(10, 3, 224, 10) = onnx::MatMul(%input.1, %7), scope: Sequential/Linear[0]
  %9 : Float(10, 3, 224, 10) = onnx::Add(%8, %2), scope: Sequential/Linear[0]
  %10 : Float(10, 3, 224, 10) = onnx::Relu(%9), scope: Sequential/ReLU[1]
  %11 : Float(10, 3, 224, 10), %12 : Tensor = onnx::Dropout[ratio=0.2](%10), scope: Sequential/Dropout[2]
  %13 : Float(10!, 10!) = onnx::Transpose[perm=[1, 0]](%3), scope: Sequential/Linear[3]
  %14 : Float(10, 3, 224, 10) = onnx::MatMul(%11, %13), scope: Sequential/Linear[3]
  %15 : Float(10, 3, 224, 10) = onnx::Add(%14, %4), scope: Sequential/Linear[3]
  %16 : Float(10, 3, 224, 10) = onnx::LeakyRelu[alpha=0.01](%15), scope: Sequential/LeakyReLU[4]
  %17 : Float(10, 3, 224, 10), %18 : Tensor = onnx::Dropout[ratio=0.2](%16), scope: Sequential/Dropout[5]
  %19 : Float(10!, 10!) = onnx::Transpose[perm=[1, 0]](%5), scope: Sequential/Linear[6]
  %20 : Float(10, 3, 224, 10) = onnx::MatMul(%17, %19), scope: Sequential/Linear[6]
  %21 : Float(10, 3, 224, 10) = onnx::Add(%20, %6), scope: Sequential/Linear[6]
  %output_1 : Float(10, 3, 224, 10) = onnx::Sigmoid(%21), scope: Sequential/Sigmoid[7]
  return (%output_1);
}