我的数据集中包含多个比例。我需要计算所有这些量表的可靠性。我可以使用for循环来简化代码。 我的数据示例如下:
js1 js2 js3 js4 js5 js6 js7 js8 IRI1 IRI2 IRI3 IRI4 IRI5 IRI6 IRI7 IRI8 IRI9 IRI10 IRI11 IRI12 IRI13 IRI14
2 2 0 1 3 4 5 1 1 2 2 1 4 3 5 1 4 3 2 3 1 4
3 0 4 5 0 3 2 1 5 5 4 2 3 1 5 2 3 3 2 1 2 5
5 3 4 3 1 1 0 1 3 4 3 1 2 2 3 4 1 5 3 2 1 4
我的部分代码如下:
justSenNames <- c(paste("justsens",1:8,sep = ''))
justSenKeys <- c(1,2,3,4,5,6,7,8)
justSenAlpha <- psych::alpha(df4321[,justSenNames], keys=justSenKeys) # calculate the alpha coefficient of JS
print(justSenAlpha$total) # print the alpha for JS
#from the Interpersonal Reactivity Index
df4321[, paste0("IRI_cn_",c(2,3,7,8,9))] <- 6- df4321[,paste0("IRI_cn_",c(2,3,7,8,9))]
IRINames <- c(paste('IRI',1:14,sep = ''))
#IRIKeys <- c(1,-2,-3,4,5,6,-7,-8,-9,10,11,12,13,14) # original reverse coding
IRIKeys <- c(1,2,3,4,5,6,7,8,9,10,11,12,13,14) # reverse coded as negative
IRIAlpha <- psych::alpha(df4321[,IRINames], keys=IRIKeys) # calculate the alpha coefficient of IRI
print(IRIAlpha$total) # print the alpha for IRI
我想用于JS和IRI的循环计算可靠性,我以这种方式尝试过:
ScalesNames <- c('justSenNames','IRINames')
KeyNames <- c ('justSenKeys','IRIKeys')
for (i in ScalesNames){
for (j in KeyNames) {
alpha <- psych::alpha(df4321[,i],keys = j)
print(Alpha$total)
}
}
Error in `[.data.frame`(df4321, , i) : undefined columns selected