我的主要目标是考虑具有更高价值的最新信息的功能。
因此,想法是通过一个新的原始转换“ WeightTimeUntil”计算一个加权因子,此后,转换原语“ MultiplyNumeric”可以使用该加权因子来获取加权值。
我将Will Koehrsen的演练walkthrough作为数据和实体设置的起点。
因此,我遇到了以下问题:
这是“ WeightTimeUntil”原语的代码
def weight_time_until(array, time):
diff = pd.DatetimeIndex(array) - time
s = np.floor(diff.days/365/0.5)
aWidth = 9
a = math.log(0.1) / ( -(aWidth -1) )
w = np.exp(-a*s)
return w
WeightTimeUntil = make_trans_primitive(function=weight_time_until,
input_types=[Datetime],
return_type=Numeric,
uses_calc_time=True,
description="Calculates weight time until the cutoff time",
name="weight_time_until")
这是DFS执行代码:
features, feature_names = ft.dfs(entityset = es, target_entity = 'clients',
agg_primitives = ['sum'],
trans_primitives = [WeightTimeUntil, MultiplyNumeric])
以及此处的功能列表:
<Feature: income>,
<Feature: credit_score>,
<Feature: join_month>,
<Feature: log_income>,
<Feature: SUM(loans.loan_amount)>,
<Feature: SUM(loans.rate)>,
<Feature: SUM(payments.payment_amount)>,
<Feature: WEIGHT_TIME_UNTIL(joined)>,
<Feature: join_month * log_income>,
<Feature: income * log_income>,
<Feature: income * join_month>,
<Feature: credit_score * join_month>,
<Feature: credit_score * log_income>,
<Feature: credit_score * income>,
<Feature: SUM(loans.WEIGHT_TIME_UNTIL(loan_start))>,
<Feature: SUM(loans.WEIGHT_TIME_UNTIL(loan_end))>,
<Feature: SUM(loans.loan_amount * rate)>,
<Feature: income * SUM(loans.loan_amount)>,
<Feature: credit_score * SUM(loans.loan_amount)>,
<Feature: log_income * SUM(payments.payment_amount)>,
<Feature: log_income * WEIGHT_TIME_UNTIL(joined)>,
<Feature: income * SUM(payments.payment_amount)>,
<Feature: join_month * SUM(loans.rate)>,
<Feature: income * SUM(loans.rate)>,
<Feature: join_month * SUM(loans.loan_amount)>,
<Feature: SUM(loans.rate) * SUM(payments.payment_amount)>,
<Feature: credit_score * WEIGHT_TIME_UNTIL(joined)>,
<Feature: SUM(loans.rate) * WEIGHT_TIME_UNTIL(joined)>,
<Feature: income * WEIGHT_TIME_UNTIL(joined)>,
<Feature: log_income * SUM(loans.loan_amount)>,
<Feature: SUM(loans.loan_amount) * WEIGHT_TIME_UNTIL(joined)>,
<Feature: SUM(loans.loan_amount) * SUM(payments.payment_amount)>,
<Feature: credit_score * SUM(loans.rate)>,
<Feature: log_income * SUM(loans.rate)>,
<Feature: credit_score * SUM(payments.payment_amount)>,
<Feature: SUM(payments.payment_amount) * WEIGHT_TIME_UNTIL(joined)>,
<Feature: join_month * WEIGHT_TIME_UNTIL(joined)>,
<Feature: SUM(loans.loan_amount) * SUM(loans.rate)>,
<Feature: join_month * SUM(payments.payment_amount)>
我期望这样的事情:
SUM(loans.loan_amount * loans.WEIGHT_TIME_UNTIL(loan_start))>
答案 0 :(得分:1)
这里的问题是SUM(loans.loan_amount * loans.WEIGHT_TIME_UNTIL(loan_start))>
是深度3功能,因为您要堆叠Sum
,MultiplyNumeric
和WeightTimeUntil
。您可以在here文档中详细了解深度。
您可以通过增加对dfs的调用的允许深度来解决此问题
features, feature_names = ft.dfs(entityset = es, target_entity = 'clients',
agg_primitives = ['sum'],
max_depth=3,
trans_primitives = [WeightTimeUntil, MultiplyNumeric])
另一种实现方法是将特征提供为种子特征,该特征不计入最大深度。您可以这样
seed_features=[ft.Feature(es["loans"]["loan_start"], primitive=WeightTimeUntil)]
features, feature_names = ft.dfs(entityset = es, target_entity = 'clients',
agg_primitives = ['sum'],
seed_features=seed_features,
trans_primitives = [MultiplyNumeric])
第二种方法比较可取,因为它将创建所需的功能,但总体上功能较少。