我有一个类似于以下的数据:
Id Car Code ShowTime
1 Honda A 10/18/2017 14:45
2 Honda A 10/18/2017 17:10
3 Honda C 10/18/2017 19:35
4 Toyota B 10/18/2017 12:20
5 Toyota B 10/18/2017 14:45
如果我包含唯一的ID,下面的代码将返回多个实例输出:
all_car_schedules = db.session.query(Schedules.id, Schedules.code,
Car.carname, Schedules.showtime) \
.filter(Schedules.id == Car.id)
df = pd.read_sql(all_car_schedules.statement, db.session.bind)
df[['show_date', 'start_times', 'median']] = df.showtime.str.split(' ', expand=True)
df['start_times'] = df['start_times'] + df['median']
df.drop('screening', axis=1, inplace=True)
df.drop('median', axis=1, inplace=True)
df_grp = df.groupby(['id', 'code', 'carname'])
df_grp_time_stacked = df_grp['start_times'].apply(list).reset_index()
df_grp_time_stacked['start_times'] = df_grp_time_stacked['start_times'].apply(lambda x: x[0] if (len(x) == 1) else x)
return_to_dict = df_grp_time_stacked.to_dict(orient='records')
上面的代码在预期输出应为以下情况时返回多行:
"data":{
'id': '1',
'schedule': {
'car': 'Honda',
'show_date': '10/18/2017',
'time_available': [
'14:45',
'17:10',
],
'code': 'A'
}
},{
'id': '3',
'schedule': {
'car': 'Honda',
'show_date': '10/18/2017',
'time_available': [
'19:35'
],
'code': 'C'
}
},{
'id': '4',
'schedule': {
'car': 'Toyota',
'show_date': '10/18/2017',
'time_available': [
'12:20',
'14:45'
],
'code': 'B'
}
}
我也在使用sqlite3作为数据库。我不确定查询中是否应该进行更改。请让我知道您的想法,并为此提供帮助。非常感谢。我还使用sqlite3作为数据库。
答案 0 :(得分:1)
您可以将Topic:__consumer_offsets PartitionCount:50 ReplicationFactor:3 Configs:segment.bytes=1138822,cleanup.policy=compact,compression.type=producer
Topic: __consumer_offsets Partition: 0 Leader: -1 Replicas: 1000,1002,1001 Isr:
Topic: __consumer_offsets Partition: 1 Leader: -1 Replicas: 1000,1002,1001 Isr:
Topic: __consumer_offsets Partition: 2 Leader: -1 Replicas: 1000,1002,1001 Isr:
Topic: __consumer_offsets Partition: 3 Leader: -1 Replicas: 1000,1002,1001 Isr:
Topic: __consumer_offsets Partition: 4 Leader: -1 Replicas: 1000,1002,1001 Isr:
Topic:gen_topic_totCount:100 ReplicationFactor:3 Configs:
Topic: gen_topic_tot: 0 Leader: -1 Replicas: 1002,1000,1001 Isr:
Topic: gen_topic_tot: 1 Leader: -1 Replicas: 1000,1001,1002 Isr:
Topic: gen_topic_tot: 2 Leader: -1 Replicas: 1001,1002,1000 Isr:
函数与groupby()
选项结合使用:
list
输出:
df = pd.DataFrame({'Id' : [1,2,3,4,5], 'Car': ['Honda', 'Honda', 'Honda', 'Toyota', 'Toyota'],
'Code': ['A', 'A', 'B', 'C', 'C'], 'show date': ['10/18/2017', '10/18/2017',
'10/18/2017', '10/18/2017', '10/18/2017'],
'start_times' : ['14:45', '17:10', '19:35', '12:20', '14:45']})
df.groupby(['Car', 'Code', 'show date'])['start_times'].apply(list)
如果要保留第一个ID,则必须像这样将选项 start_times
Car Code show date
Honda A 10/18/2017 [14:45, 17:10]
B 10/18/2017 [19:35]
Toyota C 10/18/2017 [12:20, 14:45]
添加到ID行:
'first'